Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice
Paolo E. Porporato, … , Stefano Geuna, Andrea Graziani
Paolo E. Porporato, … , Stefano Geuna, Andrea Graziani
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):611-622. https://doi.org/10.1172/JCI39920.
View: Text | PDF
Research Article Muscle biology

Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

  • Text
  • PDF
Abstract

Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a–independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a–independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a–mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.

Authors

Paolo E. Porporato, Nicoletta Filigheddu, Simone Reano, Michele Ferrara, Elia Angelino, Viola F. Gnocchi, Flavia Prodam, Giulia Ronchi, Sharmila Fagoonee, Michele Fornaro, Federica Chianale, Gianluca Baldanzi, Nicola Surico, Fabiola Sinigaglia, Isabelle Perroteau, Roy G. Smith, Yuxiang Sun, Stefano Geuna, Andrea Graziani

×

Figure 5

UnAG pharmacological treatment protects skeletal muscle from fasting- and denervation-induced atrophy in WT mice.

Options: View larger image (or click on image) Download as PowerPoint
UnAG pharmacological treatment protects skeletal muscle from fasting- an...
(A–C) Phosphorylation of AktS473, FoxO3aT32, and p38T180/Y182 in gastrocnemii of WT mice treated with 100 μg/kg UnAG or saline. At the indicated time points, gastrocnemii were removed and processed for Western blot analysis. Shown are representative blots and densitometric analysis of 3 independent experiments, normalized to untreated animals (not shown). (D–F) Mean percent weight loss (D), CSA reduction (E), and CSA frequency distribution (F) of gastrocnemii from fed or 48-hour fasted mice treated twice daily with 100 μg/kg UnAG or saline (n = 5 per group). Frequency distribution was measured in 3 mice per group. In D and E, percent reduction shown is between fasted and fed mice. (G–I) Mean percent weight loss (G), CSA reduction (H), and CSA frequency distribution (I) of gastrocnemii from mice treated with 100 μg/kg UnAG or saline twice daily for 7 days after sciatic nerve resection (n = 5 per group). Frequency distribution was measured in 3 mice per group. In G and H, percent reduction shown is between denervated gastrocnemii and gastrocnemii from the unperturbed side. *P < 0.05, **P < 0.01 vs. saline treatment.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts