Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency
Menno C. van Zelm, … , Jacques J.M. van Dongen, Mirjam van der Burg
Menno C. van Zelm, … , Jacques J.M. van Dongen, Mirjam van der Burg
Published March 8, 2010
Citation Information: J Clin Invest. 2010;120(4):1265-1274. https://doi.org/10.1172/JCI39748.
View: Text | PDF
Research Article Immunology

CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency

  • Text
  • PDF
Abstract

Antibody deficiencies constitute the largest group of symptomatic primary immunodeficiency diseases. In several patients, mutations in CD19 have been found to underlie disease, demonstrating the critical role for the protein encoded by this gene in antibody responses; CD19 functions in a complex with CD21, CD81, and CD225 to signal with the B cell receptor upon antigen recognition. We report here a patient with severe nephropathy and profound hypogammaglobulinemia. The immunodeficiency was characterized by decreased memory B cell numbers, impaired specific antibody responses, and an absence of CD19 expression on B cells. The patient had normal CD19 alleles but carried a homozygous CD81 mutation resulting in a complete lack of CD81 expression on blood leukocytes. Retroviral transduction and glycosylation experiments on EBV-transformed B cells from the patient revealed that CD19 membrane expression critically depended on CD81. Similar to CD19-deficient patients, CD81-deficient patients had B cells that showed impaired activation upon stimulation via the B cell antigen receptor but no overt T cell subset or function defects. In this study, we present what we believe to be the first antibody deficiency syndrome caused by a mutation in the CD81 gene and consequent disruption of the CD19 complex on B cells. These findings may contribute to unraveling the genetic basis of antibody deficiency syndromes and the nonredundant functions of CD81 in humans.

Authors

Menno C. van Zelm, Julie Smet, Brigitte Adams, Françoise Mascart, Liliane Schandené, Françoise Janssen, Alina Ferster, Chiung-Chi Kuo, Shoshana Levy, Jacques J.M. van Dongen, Mirjam van der Burg

×

Figure 6

Tetanus toxoid–induced IFN-γ production by total PBMCs compared with monocyte-depleted PBMCs.

Options: View larger image (or click on image) Download as PowerPoint
Tetanus toxoid–induced IFN-γ production by total PBMCs compared with mon...
IFN-γ concentrations were measured by ELISA in the supernatants after 7-day cultures of blood mononuclear cells or monocyte-depleted cell suspensions in the presence of 5 μg/ml tetanus toxoid. In contrast to 3 controls, the patient’s responses were decreased when monocytes were depleted before culture. Dotted lines denote healthy controls, and solid lines represent the patient before (lower line) and 1 month after a tetanus toxoid booster (upper line).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts