Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Dendritic cells in intestinal homeostasis and disease
Maria Rescigno, Antonio Di Sabatino
Maria Rescigno, Antonio Di Sabatino
Published September 1, 2009
Citation Information: J Clin Invest. 2009;119(9):2441-2450. https://doi.org/10.1172/JCI39134.
View: Text | PDF
Science in Medicine

Dendritic cells in intestinal homeostasis and disease

  • Text
  • PDF
Abstract

DCs are specialized APCs that orchestrate innate and adaptive immune responses. The intestinal mucosa contains numerous DCs, which induce either protective immunity to infectious agents or tolerance to innocuous antigens, including food and commensal bacteria. Several subsets of mucosal DCs have been described that display unique functions, dictated in part by the local microenvironment. In this review, we summarize the distinct subtypes of DCs and their distribution in the gut; examine how DC dysfunction contributes to intestinal disease development, including inflammatory bowel disease and celiac disease; and discuss manipulation of DCs for therapy.

Authors

Maria Rescigno, Antonio Di Sabatino

×

Figure 1

DC distribution and function in the LP.

Options: View larger image (or click on image) Download as PowerPoint
DC distribution and function in the LP.
Left: CX3CR1+ DCs extend protrus...
Left: CX3CR1+ DCs extend protrusions across the epithelial barrier. These cells also express CD70 and drive the differentiation of Th17 cells via a mechanism dependent on ATP and/or flagellin. CD103+ DCs migrate into the draining MLN, where they promote the conversion of Foxp3+ Tregs via an RA- and TGF-β–dependent mechanism. Tregs also upregulate the expression of the gut-homing marker α4β7. A third population of APCs of non–bone marrow origin expressing CD70+ is required for T cell proliferation directly in the LP. Right: The phenotype of CD103+ LP DCs is conferred by the local microenvironment, in particular by IECs via the release of TGF-β, RA, and — in the human system — TSLP. CD103+ DCs acquire the ability to drive the differentiation of Tregs and to inhibit Th1 and Th17 cell development. Macrophages also limit intestinal inflammation via activation of Tregs and inhibition of the ability of CX3CR1+ DCs to drive Th17 cell development. Macrophages retain full antibactericidal activity.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts