Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence
Barbara Rehermann
Barbara Rehermann
Published July 1, 2009
Citation Information: J Clin Invest. 2009;119(7):1745-1754. https://doi.org/10.1172/JCI39133.
View: Text | PDF
Science in Medicine

Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence

  • Text
  • PDF
Abstract

Since the identification of the hepatitis C virus (HCV) 20 years ago, much progress has been made in our understanding of its life cycle and interaction with the host immune system. Much has been learned from HCV itself, which, via decades of coevolution, gained an intricate knowledge of host innate and adaptive immune responses and developed sophisticated ways to preempt, subvert, and antagonize them. This review discusses the clinical, virological, and immunological features of acute and chronic hepatitis C and the role of the immune response in spontaneous and treatment-induced HCV clearance.

Authors

Barbara Rehermann

×

Figure 2

HCV attenuates innate immune responses.

Options: View larger image (or click on image) Download as PowerPoint
HCV attenuates innate immune responses.
(A) Hepatocytes sense HCV dsRNA ...
(A) Hepatocytes sense HCV dsRNA structures via pattern recognition receptors RIG-I and TLR3. These receptors activate via their adaptor molecules IPS-1 and TRIF, respectively, NF-κB, and the downstream kinases IKKε and TNF receptor–associated factor family member–associated NF-κB activator–binding kinase–1 (TBK1). IKKε and TBK1 phosphorylate the transcription factor IRF3, which dimerizes, translocates to the nucleus, and activates IFN-β gene transcription in synergy with NF-κB. HCV NS3/4A cleaves the adapter molecules TRIF and IPS-1, thereby blocking TLR3 and RIG-I signaling. (B) Binding of IFN-β to the IFN-α/β receptor (IFNAR-1 and -2) activates the JAK/STAT pathway. Specifically, TYK2 and JAK1 kinase activation results in the generation, phosphorylation, and assembly of the trimeric ISGF3 transcription factor complex, which consists of a STAT1–STAT2 heterodimer and IRF9. This complex translocates to the nucleus, binds to IFN-stimulated response elements (ISREs) within the promoter/enhancer region of ISGs and induces 2′-5′ OAS, PKR, and IRF7 production. HCV core interferes with the JAK/STAT pathway by inducing SOCS1/3 and by inhibiting STAT1 phosphorylation. The HCV polyprotein induces protein phosphatase 2A (PP2A), which interferes with STAT1 methylation, thereby increasing the binding of STAT1 to protein inhibitor of activated STAT1 (PIAS). STAT1/PIAS interaction impairs the binding of the ISGF3 complex to the IFN-stimulated response element and blocks the transcription of ISGs. HCV E2 and HCV NS5A inhibit the function of several ISGs (see text for details).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts