Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice
Nicolas Leuenberger, … , Sylvain Pradervand, Walter Wahli
Nicolas Leuenberger, … , Sylvain Pradervand, Walter Wahli
Published September 1, 2009
Citation Information: J Clin Invest. 2009;119(10):3138-3148. https://doi.org/10.1172/JCI39019.
View: Text | PDF
Research Article Genetics

Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice

  • Text
  • PDF
Abstract

As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARα has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARα ligand. Using the steroid oxysterol 7α-hydroxylase cytochrome P450 7b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARα-dependent repression. Initial sumoylation of the ligand-binding domain of PPARα triggered the interaction of PPARα with GA-binding protein α (GABPα) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.

Authors

Nicolas Leuenberger, Sylvain Pradervand, Walter Wahli

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 654 52
PDF 71 20
Figure 249 1
Supplemental data 26 2
Citation downloads 57 0
Totals 1,057 75
Total Views 1,132
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts