Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice
Bernhard Maier, Takeshi Ogihara, Anthony P. Trace, Sarah A. Tersey, Reiesha D. Robbins, Swarup K. Chakrabarti, Craig S. Nunemaker, Natalie D. Stull, Catherine A. Taylor, John E. Thompson, Richard S. Dondero, Eli C. Lewis, Charles A. Dinarello, Jerry L. Nadler, Raghavendra G. Mirmira
Bernhard Maier, Takeshi Ogihara, Anthony P. Trace, Sarah A. Tersey, Reiesha D. Robbins, Swarup K. Chakrabarti, Craig S. Nunemaker, Natalie D. Stull, Catherine A. Taylor, John E. Thompson, Richard S. Dondero, Eli C. Lewis, Charles A. Dinarello, Jerry L. Nadler, Raghavendra G. Mirmira
View: Text | PDF
Research Article

The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice

  • Text
  • PDF
Abstract

In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to β cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent β cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.

Authors

Bernhard Maier, Takeshi Ogihara, Anthony P. Trace, Sarah A. Tersey, Reiesha D. Robbins, Swarup K. Chakrabarti, Craig S. Nunemaker, Natalie D. Stull, Catherine A. Taylor, John E. Thompson, Richard S. Dondero, Eli C. Lewis, Charles A. Dinarello, Jerry L. Nadler, Raghavendra G. Mirmira

×

Figure 10

Inhibition of hypusination protects against low-dose STZ-induced hyperglycemia.

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of hypusination protects against low-dose STZ-induced hypergl...
GC7 or control saline was administered to male C57BL/6J mice by either daily intraperitoneal injection or subcutaneous implanted osmotic pumps. Then, mice underwent 5 consecutive injections of low-dose STZ, as detailed in Figure 1A. (A and B) IPGTTs at day 7 in mice administered saline or GC7 via (A) intraperitoneal injection (n = 6–8) or (B) osmotic pump (n = 4). Data are significantly different (*P < 0.05) between all 3 groups in A and for STZ saline only in B. (C) Blood insulin levels at 0 and 30 minutes during the GTT shown in A (n = 4). *P < 0.05. (D) β cell mass in mice from A (n = 3 mice per group). (E) Representative images of islets from fixed and stained pancreata from mice in A that were stained for iNOS (red) and counterstained with hematoxylin (blue). Original magnification, ×630. (F) Serum levels of the indicated cytokines in mice from A and from STZ-treated C57BL/6J mice that were intraperitoneally injected with IL-1Ra (see Figure 1B). n = 3–4 animals per group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts