Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice
Bernhard Maier, … , Jerry L. Nadler, Raghavendra G. Mirmira
Bernhard Maier, … , Jerry L. Nadler, Raghavendra G. Mirmira
Published May 24, 2010
Citation Information: J Clin Invest. 2010;120(6):2156-2170. https://doi.org/10.1172/JCI38924.
View: Text | PDF
Research Article

The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice

  • Text
  • PDF
Abstract

In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to β cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent β cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.

Authors

Bernhard Maier, Takeshi Ogihara, Anthony P. Trace, Sarah A. Tersey, Reiesha D. Robbins, Swarup K. Chakrabarti, Craig S. Nunemaker, Natalie D. Stull, Catherine A. Taylor, John E. Thompson, Richard S. Dondero, Eli C. Lewis, Charles A. Dinarello, Jerry L. Nadler, Raghavendra G. Mirmira

×

Figure 1

STZ-induced hyperglycemia is partially blocked by IL-1Ra and by knockdown of eIF5A in immunocompetent mice.

Options: View larger image (or click on image) Download as PowerPoint
STZ-induced hyperglycemia is partially blocked by IL-1Ra and by knockdow...
(A) Schematic representation of the STZ, IL-1Ra, and siRNA injection protocol in male mice. (B) IPGTTs at day 7 in C57BL/6J male mice (n = 4 per group). *P < 0.05. (C) IPGTTs at day 7 in NOD/SCID/Il2rg-null male mice (n = 4 per group). *P < 0.05. (D) Scatter plot of individual fasting blood glucose levels at day 7 in C57BL/6J male mice. The mean fasting blood glucose for si-Control–injected mice is statistically different (P < 0.05) compared with untreated mice. Numbers over each set of symbols represent the mean fasting glucose level in mg/dl in each group. Individual symbols represent individual mice, and horizontal bars indicate the mean glucose level for each group. (E) IPGTTs at day 7 in C57BL/6J male mice (n = 13–17 per group). *P < 0.05.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts