Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells
Zhihui Zhong, … , Don W. Cleveland, Berislav V. Zlokovic
Zhihui Zhong, … , Don W. Cleveland, Berislav V. Zlokovic
Published October 19, 2009
Citation Information: J Clin Invest. 2009;119(11):3437-3449. https://doi.org/10.1172/JCI38476.
View: Text | PDF
Research Article

Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells

  • Text
  • PDF
Abstract

Activated protein C (APC) is a signaling protease with anticoagulant activity. Here, we have used mice expressing a mutation in superoxide dismutase-1 (SOD1) that is linked to amyotrophic lateral sclerosis (ALS) to show that administration of APC or APC analogs with reduced anticoagulant activity after disease onset slows disease progression and extends survival. A proteolytically inactive form of APC with reduced anticoagulant activity provided no benefit. APC crossed the blood–spinal cord barrier in mice via endothelial protein C receptor. When administered after disease onset, APC eliminated leakage of hemoglobin-derived products across the blood–spinal cord barrier and delayed microglial activation. In microvessels, motor neurons, and microglial cells from SOD1-mutant mice and in cultured neuronal cells, APC transcriptionally downregulated SOD1. Inhibition of SOD1 synthesis in neuronal cells by APC required protease-activated receptor–1 (PAR1) and PAR3, which inhibited nuclear transport of the Sp1 transcription factor. Diminished mutant SOD1 synthesis by selective gene excision within endothelial cells did not alter disease progression, which suggests that diminished mutant SOD1 synthesis in other cells, including motor neurons and microglia, caused the APC-mediated slowing of disease. The delayed disease progression in mice after APC administration suggests that this approach may be of benefit to patients with familial, and possibly sporadic, ALS.

Authors

Zhihui Zhong, Hristelina Ilieva, Lee Hallagan, Robert Bell, Itender Singh, Nicole Paquette, Meenakshisundaram Thiyagarajan, Rashid Deane, Jose A. Fernandez, Steven Lane, Anna B. Zlokovic, Todd Liu, John H. Griffin, Nienwen Chow, Francis J. Castellino, Konstantin Stojanovic, Don W. Cleveland, Berislav V. Zlokovic

×

Figure 4

5A-APC–PAR1/PAR3–mediated SOD1 suppression and neuroprotection in N2a cells.

Options: View larger image (or click on image) Download as PowerPoint
5A-APC–PAR1/PAR3–mediated SOD1 suppression and neuroprotection in N2a ce...
(A) SOD1G93A and mSOD1 mRNA levels, determined by QPCR in N2a-SOD1G85R cells treated with 5A-APC (5 nM) or saline for 48 h. (B) SOD1G93A and mSOD1 protein levels, determined by immunoblot analysis of N2a-SOD1G85R cell lysates in A. (C) Scanning densitometry of SOD1G93A and mSOD1 bands in B, relative to β-actin. (D and E) SOD1G93A mRNA levels in N2a-SOD1G85R cells treated with 0–10 nM WT-APC or 5A-APC for 48 h (D) or 5 nM 5A-APC with and without 20 μg/ml of cleavage site–blocking PAR1, PAR2, PAR3, and PAR4 antibodies (E). (F and G) N2a-SOD1G85R cell viability 16 h after incubation with xanthine/xanthine oxidase (X/XO) with and without 5 nM 5A-APC and 20 μg/ml PAR-blocking antibodies (F) and 0–10 nM WT-APC or 5A-APC (G). (A–G) n = 5. (H) Viability of N2a-SOD1WT, N2a-SOD1G37R, and N2a-SOD1G85R cells 16 h after incubation with Hb with and without 5 nM 5A-APC or S360A-APC. (I) Double staining for ROS and Hoechst in N2a-SOD1G85R cells 16 h after incubation with Hb with and without 5 nM 5A-APC or S360A-APC. Scale bars: 20 μm. (J) SOD1 reduction in hSOD1 shRNA–transfected N2a-SOD1G85R cells by immunoblot analysis. (K) Viability of N2a-SOD1G85R cells transfected with hSOD1 shRNA or control shRNA and incubated with Hb as in H. (H–K) n = 3–5. (L) N2a-SOD1G85R cell viability 24 hours after 10 minutes of exposure to 300 μM NMDA with or without 5 nM 5A-APC. n = 5.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts