Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells
Zhihui Zhong, … , Don W. Cleveland, Berislav V. Zlokovic
Zhihui Zhong, … , Don W. Cleveland, Berislav V. Zlokovic
Published October 19, 2009
Citation Information: J Clin Invest. 2009;119(11):3437-3449. https://doi.org/10.1172/JCI38476.
View: Text | PDF
Research Article

Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells

  • Text
  • PDF
Abstract

Activated protein C (APC) is a signaling protease with anticoagulant activity. Here, we have used mice expressing a mutation in superoxide dismutase-1 (SOD1) that is linked to amyotrophic lateral sclerosis (ALS) to show that administration of APC or APC analogs with reduced anticoagulant activity after disease onset slows disease progression and extends survival. A proteolytically inactive form of APC with reduced anticoagulant activity provided no benefit. APC crossed the blood–spinal cord barrier in mice via endothelial protein C receptor. When administered after disease onset, APC eliminated leakage of hemoglobin-derived products across the blood–spinal cord barrier and delayed microglial activation. In microvessels, motor neurons, and microglial cells from SOD1-mutant mice and in cultured neuronal cells, APC transcriptionally downregulated SOD1. Inhibition of SOD1 synthesis in neuronal cells by APC required protease-activated receptor–1 (PAR1) and PAR3, which inhibited nuclear transport of the Sp1 transcription factor. Diminished mutant SOD1 synthesis by selective gene excision within endothelial cells did not alter disease progression, which suggests that diminished mutant SOD1 synthesis in other cells, including motor neurons and microglia, caused the APC-mediated slowing of disease. The delayed disease progression in mice after APC administration suggests that this approach may be of benefit to patients with familial, and possibly sporadic, ALS.

Authors

Zhihui Zhong, Hristelina Ilieva, Lee Hallagan, Robert Bell, Itender Singh, Nicole Paquette, Meenakshisundaram Thiyagarajan, Rashid Deane, Jose A. Fernandez, Steven Lane, Anna B. Zlokovic, Todd Liu, John H. Griffin, Nienwen Chow, Francis J. Castellino, Konstantin Stojanovic, Don W. Cleveland, Berislav V. Zlokovic

×

Figure 2

Uptake of radiolabeled 5A-APC by the spinal cord.

Options: View larger image (or click on image) Download as PowerPoint
Uptake of radiolabeled 5A-APC by the spinal cord.
(A) Arterial plasma pr...
(A) Arterial plasma profile of 125I-5A-APC (TCA-precipitable 125I-radioactivity) after i.p. injection at 100 μg/kg. n = 3. (B) Transport of circulating 125I-5A-APC into the lumbar cord ISF in severely depleted EPCR mice (EPCRδ/δ), PAR1–/– mice, and their matching littermate controls (all on C57BL/6 background) after i.p. injection of 125I-5A-APC (100 μg/kg). Concentration of 125I-5A-APC was calculated from TCA-precipitable 125I-radioactivity corrected for the residual vascular radioactivity (see Methods). n = 3–5. (C) Immunoblot of EPCR in spinal cord microvessels isolated from severely depleted EPCR mice and littermate controls. (D) Transport of circulating 125I-5A-APC into the lumbar cord ISF in nontransgenic B6SJL controls compared with SOD1G93A mice treated with 5A-APC (100 μg/kg/d) or saline for 4 weeks after disease onset. n = 5. (E) Immunoblot analysis of EPCR in spinal cord microvessels isolated from B6SJL or SOD1G93A mice treated with saline or 5A-APC (100 μg/kg/d) for 4 weeks after disease onset. β-Actin was used as a loading control. (F) Densitometry of EPCR signal intensity from experiments in E. n = 3–5.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts