Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Functions of the intermediate filament cytoskeleton in the eye lens
Shuhua Song, … , Qingjiong Zhang, Roy A. Quinlan
Shuhua Song, … , Qingjiong Zhang, Roy A. Quinlan
Published July 1, 2009
Citation Information: J Clin Invest. 2009;119(7):1837-1848. https://doi.org/10.1172/JCI38277.
View: Text | PDF
Review Series

Functions of the intermediate filament cytoskeleton in the eye lens

  • Text
  • PDF
Abstract

Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous polymers in establishing the optical properties of the eye lens and in maintaining its transparency. For instance, mutations in both BFSP1 and BFSP2 cause cataract in humans. We also explore the potential role of BFSP1 and BFSP2 in aging processes in the lens.

Authors

Shuhua Song, Andrew Landsbury, Ralf Dahm, Yizhi Liu, Qingjiong Zhang, Roy A. Quinlan

×

Figure 4

Schematic highlighting the unusual features of the protein domains in BFSP1 and BFSP2.

Options: View larger image (or click on image) Download as PowerPoint
Schematic highlighting the unusual features of the protein domains in BF...
Predicted secondary structure for a typical IF protein (vimentin) compared with that predicted for BFSP2 and BFSP1. IF proteins are composed of an α-helical coiled-coil domain flanked by non-helical N and C termini. The boxes represent α-helical domains, which are separated by non-helical linkers L1, L12, and L2. The yellow boxes at the ends of helix 1A and 2B represent the highly conserved LNDR and TYRKLLEGE motifs, in which mutations usually seriously disturb IF function. These motifs are changed in mammalian BFSP1 (LGER and RYHRIIEIE, respectively) and BFSP2 (LGGC and SYHALLDRE, respectively). The R-to-C change in the LNDR motif of BFSP2 would actually cause disease if found in, for example, glial fibrillary acidic protein (GFAP) (110), and for this reason the motif is colored red in the schematic. In fact, an R113C mutation causes cataract in mice when introduced into vimentin (87). Clearly, it is the context of such a change that will determine whether this alone will abrogate filament function. The rod domain of BFSP1 is predicted to be 2–3 nm shorter than that of other mammalian IF proteins due to its shorter helix 2. BFSP2 lacks a C-terminal tail as also observed for keratin 19, a type 1 IF protein.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts