Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice
Jing Qing, … , Christian Wiesmann, Avi Ashkenazi
Jing Qing, … , Christian Wiesmann, Avi Ashkenazi
Published April 20, 2009
Citation Information: J Clin Invest. 2009;119(5):1216-1229. https://doi.org/10.1172/JCI38017.
View: Text | PDF
Research Article

Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice

  • Text
  • PDF
Abstract

Overexpression of FGF receptor 3 (FGFR3) is implicated in the development of t(4;14)-positive multiple myeloma. While FGFR3 is frequently overexpressed and/or activated through mutations in bladder cancer, the functional importance of FGFR3 and its potential as a specific therapeutic target in this disease have not been elucidated in vivo. Here we report that inducible knockdown of FGFR3 in human bladder carcinoma cells arrested cell-cycle progression in culture and markedly attenuated tumor progression in xenografted mice. Further, we developed a unique antibody (R3Mab) that inhibited not only WT FGFR3, but also various mutants of the receptor, including disulfide-linked cysteine mutants. Biochemical analysis and 2.1-Å resolution crystallography revealed that R3Mab bound to a specific FGFR3 epitope that simultaneously blocked ligand binding, prevented receptor dimerization, and induced substantial conformational changes in the receptor. R3Mab exerted potent antitumor activity against bladder carcinoma and t(4;14)-positive multiple myeloma xenografts in mice by antagonizing FGFR3 signaling and eliciting antibody-dependent cell-mediated cytotoxicity (ADCC). These studies provide in vivo evidence demonstrating an oncogenic role of FGFR3 in bladder cancer and support antibody-based targeting of FGFR3 in hematologic and epithelial cancers driven by WT or mutant FGFR3.

Authors

Jing Qing, Xiangnan Du, Yongmei Chen, Pamela Chan, Hao Li, Ping Wu, Scot Marsters, Scott Stawicki, Janet Tien, Klara Totpal, Sarajane Ross, Susanna Stinson, David Dornan, Dorothy French, Qian-Rena Wang, Jean-Philippe Stephan, Yan Wu, Christian Wiesmann, Avi Ashkenazi

×

Figure 7

R3Mab inhibits xenograft growth of bladder cancer cells and allograft growth of Ba/F3-FGFR3S249C.

Options: View larger image (or click on image) Download as PowerPoint
R3Mab inhibits xenograft growth of bladder cancer cells and allograft gr...
(A) Effect of R3Mab on the growth of preestablished RT112 bladder cancer xenografts compared with vehicle control. n = 10 per group. (B) Inhibition of FGFR3 signaling in RT112 tumor tissues by R3Mab. In a separate experiment, RT112 xenograft tumors from mice treated with 15 mg/kg of a control antibody (Ctrl) or R3Mab for 48 or 72 hours were collected (n = 3 per group), homogenized, and analyzed for FRS2α and MAPK activation by immunoblot. (C) Effect of R3Mab on the growth of preestablished Ba/F3-FGFR3S249C allografts. n = 10 per group. (D) Effect of R3Mab on the growth of preestablished UMUC-14 bladder cancer xenografts. n = 10 per group. (E) Effect of R3Mab on FGFR3S249C dimer and signaling in UMUC-14 tumor tissues. UMUC-14 xenograft tumors from mice treated with 30 mg/kg of a control antibody or R3Mab for 24 or 72 hours were collected (n = 3 per group), homogenized, and analyzed for FGFR3S249C dimer-monomer equilibrium as well as MAPK activation by immunoblot. Note: FGFR3 dimer-monomer equilibrium was analyzed using anti-FGFR3 rabbit polyclonal antibody sc9007 to avoid interference from mouse IgG in tumor lysates. Error bars represent SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts