Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells
Paul T. Brinkkoetter, … , James M. Roberts, Stuart J. Shankland
Paul T. Brinkkoetter, … , James M. Roberts, Stuart J. Shankland
Published September 1, 2009
Citation Information: J Clin Invest. 2009;119(10):3089-3101. https://doi.org/10.1172/JCI37978.
View: Text | PDF
Research Article Nephrology

Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells

  • Text
  • PDF
Abstract

Cyclin I is an atypical cyclin because it is most abundant in postmitotic cells. We previously showed that cyclin I does not regulate proliferation, but rather controls survival of podocytes, terminally differentiated epithelial cells that are essential for the structural and functional integrity of kidney glomeruli. Here, we investigated the mechanism by which cyclin I safeguards against apoptosis and found that cyclin I bound and activated cyclin-dependent kinase 5 (Cdk5) in isolated mouse podocytes and neurons. Cdk5 activity was reduced in glomeruli and brain lysates from cyclin I–deficient mice, and inhibition of Cdk5 increased in vitro the susceptibility to apoptosis in response to cellular damage. In addition, levels of the prosurvival proteins Bcl-2 and Bcl-XL were reduced in podocytes and neurons from cyclin I–deficient mice, and restoration of Bcl-2 or Bcl-XL expression prevented injury-induced apoptosis. Furthermore, we found that levels of phosphorylated MEK1/2 and ERK1/2 were decreased in cyclin I–deficient podocytes and that inhibition of MEK1/2 restored Bcl2 and Bcl-XL protein levels. Of interest, this pathway was also defective in mice with experimental glomerulonephritis. Taken together, these data suggest that a cyclin I–Cdk5 complex forms a critical antiapoptotic factor in terminally differentiated cells that functions via MAPK signaling to modulate levels of the prosurvival proteins Bcl-2 and Bcl-XL.

Authors

Paul T. Brinkkoetter, Paul Olivier, Jimmy S. Wu, Scott Henderson, Ronald D. Krofft, Jeffrey W. Pippin, David Hockenbery, James M. Roberts, Stuart J. Shankland

×

Figure 12

Proposed model showing the effects of Cdk5 upon activation by cyclin I and p35.

Options: View larger image (or click on image) Download as PowerPoint
Proposed model showing the effects of Cdk5 upon activation by cyclin I a...
Cdk5 is activated by cyclin I and p35. The pathways by which Cdk5 confers a prosurvival function depend on the activator. Cyclin I–Cdk5 leads to phosphorylation of MEK1/2, and subsequently, ERK1/2, leading to increased mRNA and protein levels for the prosurvival proteins Bcl-2 and Bcl-XL. In contrast, p35-Cdk5 increases Bcl-2 protein levels by posttranslational modification (30). p35-Cdk5 has no effect on Bcl-XL levels. The dual activation of Cdk5 by cyclin I and p35 ensures that maximal survival pathways are operative in terminally differentiated cells.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts