Renal outer medullary potassium (ROMK) channels are exquisitely regulated to adjust renal potassium excretion and maintain potassium balance. Clathrin-dependent endocytosis plays a critical role, limiting urinary potassium loss in potassium deficiency. In renal disease, aberrant ROMK endocytosis may contribute to potassium retention and hyperkalemia. Previous work has indicated that ROMK endocytosis is stimulated by with-no-lysine (WNK) kinases, but the endocytotic signal and the internalization machinery have not been defined. Here, we found that ROMK bound directly to the clathrin adaptor molecule autosomal recessive hypercholesterolemia (ARH), and this interaction was mediated by what we believe to be a novel variant of the canonical “NPXY” endocytotic signal, YxNPxFV. ARH recruits ROMK to clathrin-coated pits for constitutive and WNK1-stimuated endocytosis, and ARH knockdown decreased basal rates of ROMK endocytosis, in a heterologous expression system, COS-7 cells. We found that ARH was predominantly expressed in the distal nephron where it coimmunoprecipitated and colocalized with ROMK. In mice, the abundance of kidney ARH protein was modulated by dietary potassium and inversely correlated with changes in ROMK. Furthermore, ARH-knockout mice exhibited an altered ROMK response to potassium intake. These data suggest that ARH marks ROMK for clathrin-dependent endocytosis, in concert with the demands of potassium homeostasis.
Liang Fang, Rita Garuti, Bo-Young Kim, James B. Wade, Paul A. Welling
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 617 | 35 |
92 | 12 | |
Figure | 452 | 5 |
Citation downloads | 75 | 0 |
Totals | 1,236 | 52 |
Total Views | 1,288 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.