Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90
Byoung Heon Kang, … , Len Neckers, Dario C. Altieri
Byoung Heon Kang, … , Len Neckers, Dario C. Altieri
Published February 23, 2009
Citation Information: J Clin Invest. 2009;119(3):454-464. https://doi.org/10.1172/JCI37613.
View: Text | PDF
Research Article

Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90

  • Text
  • PDF
Abstract

Although therapeutically targeting a single signaling pathway that drives tumor development and/or progression has been effective for a number of cancers, in many cases this approach has not been successful. Targeting networks of signaling pathways, instead of isolated pathways, may overcome this problem, which is probably due to the extreme heterogeneity of human tumors. However, the possibility that such networks may be spatially arranged in specialized subcellular compartments is not often considered in pathway-oriented drug discovery and may influence the design of new agents. Hsp90 is a chaperone protein that controls the folding of proteins in multiple signaling networks that drive tumor development and progression. Here, we report the synthesis and properties of Gamitrinibs, a class of small molecules designed to selectively target Hsp90 in human tumor mitochondria. Gamitrinibs were shown to accumulate in the mitochondria of human tumor cell lines and to inhibit Hsp90 activity by acting as ATPase antagonists. Unlike Hsp90 antagonists not targeted to mitochondria, Gamitrinibs exhibited a “mitochondriotoxic” mechanism of action, causing rapid tumor cell death and inhibiting the growth of xenografted human tumor cell lines in mice. Importantly, Gamitrinibs were not toxic to normal cells or tissues and did not affect Hsp90 homeostasis in cellular compartments other than mitochondria. Therefore, combinatorial drug design, whereby inhibitors of signaling networks are targeted to specific subcellular compartments, may generate effective anticancer drugs with novel mechanisms of action.

Authors

Byoung Heon Kang, Janet Plescia, Ho Young Song, Massimiliano Meli, Giorgio Colombo, Kristin Beebe, Bradley Scroggins, Len Neckers, Dario C. Altieri

×

Figure 2

Inhibition of Hsp90 chaperone activity.

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of Hsp90 chaperone activity.
(A) Competition with GA affinity...
(A) Competition with GA affinity beads. GA (left panel) or Gamitrinib-G4 (right panel), at the indicated concentrations, were incubated with aliquots of SKBr3 tumor cell lysates followed by affinity purification of Hsp90 using GA affinity beads. Data are densitometric quantifications of scanning and image analysis of Hsp90 bands visualized by Western blotting. (B) Inhibition of Chk1 kinase activity. 17-AAG or Gamitrinib-G4 (1–10 μM) were analyzed for modulation of Chk1-dependent phosphorylation of Cdc25. Densitometric quantification of protein bands (right panel). (A and B) Data are representative of 2 independent experiments with identical results. (C) Accumulation of Gamitrinib in mitochondria. Cellular extracts were loaded with vehicle (None), unconjugated 17-AAG, or Gamitrinib-G4 and analyzed before (left panel) or after gradient density ultracentrifugation (right panel). The position of the 1–1.5 M interface corresponding to isolated mitochondria is indicated. (D) Quantification of mitochondrial accumulation. Mitochondria isolated from HeLa cells were incubated with 17-AAG, Gamitrinib-G4, or vehicle and analyzed using absorbance. Data are the mean ± SEM (n = 3). (E) Mitochondriotropic properties of all Gamitrinibs. Mitochondria isolated from Raji cells were incubated with the indicated Gamitrinibs or vehicle and analyzed by absorbance. Data are from a representative experiment out of 2 independent determinations.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts