Congenital anomalies affecting the ureter-bladder junction are frequent in newborns and are often associated with other developmental defects. However, the molecular and morphological processes underlying these malformations are still poorly defined. In this study, we identified the leukocyte antigen–related (LAR) family protein tyrosine phosphatase, receptor type, S and F (Ptprs and Ptprf [also known as Lar], respectively), as crucially important for distal ureter maturation and craniofacial morphogenesis in the mouse. Embryos lacking both Ptprs and Ptprf displayed severe urogenital malformations, characterized by hydroureter and ureterocele, and craniofacial defects such as cleft palate, micrognathia, and exencephaly. The detailed analysis of distal ureter maturation, the process by which the ureter is displaced toward its final position in the bladder wall, leads us to propose a revised model of ureter maturation in normal embryos. This process was deficient in embryos lacking Ptprs and Ptprf as a result of a marked reduction in intrinsic programmed cell death, thereby causing urogenital system malformations. In cell culture, Ptprs bound and negatively regulated the phosphorylation and signaling of the Ret receptor tyrosine kinase, whereas Ptprs-induced apoptosis was inhibited by Ret expression. Together, these results suggest that ureter positioning is controlled by the opposing actions of Ret and LAR family phosphatases regulating apoptosis-mediated tissue morphogenesis.
Noriko Uetani, Kristen Bertozzi, Melanie J. Chagnon, Wiljan Hendriks, Michel L. Tremblay, Maxime Bouchard
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 725 | 44 |
76 | 22 | |
Figure | 300 | 3 |
Table | 46 | 0 |
Supplemental data | 71 | 1 |
Citation downloads | 81 | 0 |
Totals | 1,299 | 70 |
Total Views | 1,369 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.