Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
Ethan J. Anderson, … , David H. Wasserman, P. Darrell Neufer
Ethan J. Anderson, … , David H. Wasserman, P. Darrell Neufer
Published March 2, 2009; First published February 2, 2009
Citation Information: J Clin Invest. 2009;119(3):573-581. https://doi.org/10.1172/JCI37048.
View: Text | PDF
Categories: Research Article Metabolism

Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans

  • Text
  • PDF
Abstract

High dietary fat intake leads to insulin resistance in skeletal muscle, and this represents a major risk factor for type 2 diabetes and cardiovascular disease. Mitochondrial dysfunction and oxidative stress have been implicated in the disease process, but the underlying mechanisms are still unknown. Here we show that in skeletal muscle of both rodents and humans, a diet high in fat increases the H2O2-emitting potential of mitochondria, shifts the cellular redox environment to a more oxidized state, and decreases the redox-buffering capacity in the absence of any change in mitochondrial respiratory function. Furthermore, we show that attenuating mitochondrial H2O2 emission, either by treating rats with a mitochondrial-targeted antioxidant or by genetically engineering the overexpression of catalase in mitochondria of muscle in mice, completely preserves insulin sensitivity despite a high-fat diet. These findings place the etiology of insulin resistance in the context of mitochondrial bioenergetics by demonstrating that mitochondrial H2O2 emission serves as both a gauge of energy balance and a regulator of cellular redox environment, linking intracellular metabolic balance to the control of insulin sensitivity.

Authors

Ethan J. Anderson, Mary E. Lustig, Kristen E. Boyle, Tracey L. Woodlief, Daniel A. Kane, Chien-Te Lin, Jesse W. Price III, Li Kang, Peter S. Rabinovitch, Hazel H. Szeto, Joseph A. Houmard, Ronald N. Cortright, David H. Wasserman, P. Darrell Neufer

×

Figure 2

The mitochondrial-targeted antioxidant SS31 prevents the increase in mitochondrial H2O2-emitting potential caused by high-fat diet in red gastrocnemius skeletal muscle of rats.

Options: View larger image (or click on image) Download as PowerPoint
The mitochondrial-targeted antioxidant SS31 prevents the increase in mit...
(A and B) Dose-response curves for mitochondrial H2O2 (mH2O2) emission following in vitro or in vivo administration of SS31. (A) Permeabilized fibers were briefly incubated in a range of SS31 concentrations prior to being assayed for maximal H2O2 emission under state 4 conditions (5 mM pyruvate/2 mM malate, 10 μg/ml oligomycin) in the presence of the complex III inhibitor antimycin A (10 μM). (B) Permeabilized fibers were assayed for maximal succinate-induced (3 mM) mitochondrial H2O2 emission under state 4 conditions (10 μg/ml oligomycin) approximately 2 hours following an acute intraperitoneal injection of SS20 (control peptide, 5 mg/kg) or varied concentrations of SS31. (C and D) SS31 ameliorates the increased mitochondrial H2O2 emission caused by high-fat diet. Permeabilized fibers were prepared from rats fed (6 weeks) standard chow, high-fat diet, or high-fat diet with daily SS31 administration, and H2O2 emission was measured during state 4 respiration (10 μg/ml oligomycin) supported by (C) succinate (as described in Figure 1) or (D) palmitoylcarnitine (25 μM) and malate (2 mM). (E and F) High-fat diet increases basal respiration with NADH-linked substrates, but SS31 has no effect. Permeabilized fibers were prepared from rats treated as indicated above, and respiration was measured with (E) pyruvate/malate (5 mM/2 mM) or (F) palmitoylcarnitine/malate (25 μM/2 mM) in both basal respiratory state 4 (PM4, PCM4) and maximal ADP-stimulated (2 mM) respiratory state 3 (PM3, PCM3). Data represent mean ± SEM; n = 4–6, *P < 0.05 vs. Std chow; †P < 0.05 vs. Std. chow and SS31-treated.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts