Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mast cell activation and migration to lymph nodes during induction of an immune response in mice.
H W Wang, N Tedla, A R Lloyd, D Wakefield, P H McNeil
H W Wang, N Tedla, A R Lloyd, D Wakefield, P H McNeil
View: Text | PDF
Research Article

Mast cell activation and migration to lymph nodes during induction of an immune response in mice.

  • Text
  • PDF
Abstract

The mast cell response in skin and lymph nodes was examined during the sensitization phase of dinitrofluorobenzene (DNFB)-induced contact hypersensitivity in mice. Degranulation of 62% of mast cells in DNFB-exposed skin was evident within 30 min of a dual application of DNFB, reaching a peak of 77% at 24 h, and persisting in 42% after 5 d. Abundant expression of macrophage inflammatory protein (MIP)-1alpha and MIP-1beta mRNAs and proteins was observed in keratinocytes, and mast cell degranulation was significantly inhibited after administration of neutralizing antibodies to MIP-1alpha, but not MIP-1beta. During DNFB sensitization, the mast cell density in the skin decreased by half, concurrent with a fivefold expansion of mast cell numbers in draining lymph nodes. Fluorescent-labeled mast cells injected into the skin appeared in draining lymph nodes after application of DNFB, followed by subsequent migration to the spleen. In lymph nodes, mast cells were an abundant and predominant source of MIP-1beta, neutralization of which partially inhibited T lymphocyte recruitment. These results indicate that mast cells contribute to the induction of this primary immune response by activation at and migration from the site of antigen encounter to draining lymph nodes, wherein they mediate T lymphocyte recruitment by production of MIP-1beta.

Authors

H W Wang, N Tedla, A R Lloyd, D Wakefield, P H McNeil

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 613 53
PDF 195 12
Citation downloads 121 0
Totals 929 65
Total Views 994
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts