Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
The pseudokinase tribbles homolog 3 interacts with ATF4 to negatively regulate insulin exocytosis in human and mouse β cells
Chong Wee Liew, … , Andrzej S. Krolewski, Rohit N. Kulkarni
Chong Wee Liew, … , Andrzej S. Krolewski, Rohit N. Kulkarni
Published July 1, 2010
Citation Information: J Clin Invest. 2010;120(8):2876-2888. https://doi.org/10.1172/JCI36849.
View: Text | PDF
Research Article Metabolism

The pseudokinase tribbles homolog 3 interacts with ATF4 to negatively regulate insulin exocytosis in human and mouse β cells

  • Text
  • PDF
Abstract

Insufficient insulin secretion and reduced pancreatic β cell mass are hallmarks of type 2 diabetes (T2DM). Here, we confirm that a previously identified polymorphism (rs2295490/Q84R) in exon 2 of the pseudokinase-encoding gene tribbles 3 (TRB3) is associated with an increased risk for T2DM in 2 populations of people of mixed European descent. Carriers of the 84R allele had substantially reduced plasma levels of C-peptide, the product of proinsulin processing to insulin, suggesting a role for TRB3 in β cell function. Overexpression of TRB3 84R in mouse β cells, human islet cells, and the murine β cell line MIN6 revealed reduced insulin exocytosis, associated with a marked reduction in docked insulin granules visualized by electron microscopy. Conversely, knockdown of TRB3 in MIN6 cells restored insulin secretion and expression of exocytosis genes. Further analysis in MIN6 cells demonstrated that TRB3 interacted with the transcription factor ATF4 and that this complex acted as a competitive inhibitor of cAMP response element-binding (CREB) transcription factor in the regulation of key exocytosis genes. In addition, the 84R TRB3 variant exhibited greater protein stability than wild-type TRB3 and increased binding affinity to Akt. Mice overexpressing TRB3 84R in β cells displayed decreased β cell mass, associated with reduced proliferation and enhanced apoptosis rates. These data link a missense polymorphism in human TRB3 to impaired insulin exocytosis and thus increased risk for T2DM.

Authors

Chong Wee Liew, Jacek Bochenski, Dan Kawamori, Jiang Hu, Colin A. Leech, Krzysztof Wanic, Maciej Malecki, James H. Warram, Ling Qi, Andrzej S. Krolewski, Rohit N. Kulkarni

×

Figure 7

TRB3 and ATF4 inhibit expression of exocytosis genes.

Options: View larger image (or click on image) Download as PowerPoint
TRB3 and ATF4 inhibit expression of exocytosis genes.
(A) Western blotti...
(A) Western blotting for CREB, SNAP25, and Rab3d in MIN6 cells electroporated with indicated plasmid DNAs. Representative images from 3 independent experiments are shown. The white vertical line indicates noncontiguous lanes. (B) ChIP assay for CREB on the Snap25 promoter in MIN6 cells treated with forskolin (10 nM, 1 hour) or thapsigargin (100 nM, 6 hours) (n = 3 in each group). The position of CREB-binding site relative to transcription start site (depicted by “+1”) on Snap25 promoter is shown. (C) Immunoprecipitation for Flag-tag in MIN6 cells expressing either Flag-tag Q84 TRB3 or 84R TRB3. Cell lysate (input) and IP lysate (pull down) were analyzed by Western blotting. Representative images from 4 independent experiments are shown. (D) Luciferase reporter assay for the Snap25 promoter (SNAP25Pro) in HEK293 cells transiently transfected with plasmids as indicated (n = 4 in each group). Results were normalized to Renilla luciferase activity and expressed as relative luciferase units. ***P < 0.001 versus Snap25 promoter with CA-CREB. (E) qRT-PCR in MIN6 cells treated with either DMSO, thapsigargin (100 nM), or tunicamycin (2 mg/ml) for 8 hours (n = 3 in each group). All data are presented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001. (F) Schematic depicting a potential role for TRB3 in the regulation of β cell exocytosis, apoptosis, and proliferation.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts