The Goto-Kakisaki (GK) rat is a genetic model of non-insulin-dependent diabetes. At 21.5 d of age we found that GK fetuses had an increased plasma glucose concentration, a decreased plasma insulin level, and a reduced pancreatic beta cell mass. To investigate the beta cell function during fetal life we used a hyperglycemic clamp protocol applied to the mothers, which allowed us to obtain a steady-state hyperglycemia in the corresponding fetuses. At variance, with Wistar (W) fetuses, plasma insulin concentration in GK fetuses did not rise in response to hyperglycemia. In contrast, GK fetal pancreas released insulin in response to glucose in vitro to the same extent as W fetal pancreas. Such a discrepancy between the in vivo and in vitro results suggests that the lack of pancreatic reactivity to glucose as seen in vivo is extrinsic to the fetal GK beta cell. Finally, the importance of gestational hyperglycemia was investigated by performing crosses between GK and W rats. Fetuses issued from crosses between W mother and GK father or GK mother and W father had a beta cell mass close to normal values and were still able to increase their plasma insulin levels in response to hyperglycemia in vivo. Our data suggest that hyperglycemia in utero does not influence the severity of the decrease of the beta cell mass or the lack of the insulin secretory response to glucose in the fetal GK rat. Moreover they indicate that conjunction of GK genes originating from both parents is necessary in order for these defects to be fully expressed.
P Serradas, M N Gangnerau, M H Giroix, C Saulnier, B Portha
Usage data is cumulative from January 2022 through January 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 177 | 21 |
17 | 21 | |
Citation downloads | 11 | 0 |
Totals | 205 | 42 |
Total Views | 247 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.