Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice
Seongah Han, Chien-Ping Liang, Marit Westerterp, Takafumi Senokuchi, Carrie L. Welch, Qizhi Wang, Michihiro Matsumoto, Domenico Accili, Alan R. Tall
Seongah Han, Chien-Ping Liang, Marit Westerterp, Takafumi Senokuchi, Carrie L. Welch, Qizhi Wang, Michihiro Matsumoto, Domenico Accili, Alan R. Tall
View: Text | PDF
Research Article Cardiology

Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice

  • Text
  • PDF
Abstract

Type 2 diabetes is associated with accelerated atherogenesis, which may result from a combination of factors, including dyslipidemia characterized by increased VLDL secretion, and insulin resistance. To assess the hypothesis that both hepatic and peripheral insulin resistance contribute to atherogenesis, we crossed mice deficient for the LDL receptor (Ldlr–/– mice) with mice that express low levels of IR in the liver and lack IR in peripheral tissues (the L1B6 mouse strain). Unexpectedly, compared with Ldlr–/– controls, L1B6Ldlr–/– mice fed a Western diet showed reduced VLDL and LDL levels, reduced atherosclerosis, decreased hepatic AKT signaling, decreased expression of genes associated with lipogenesis, and diminished VLDL apoB and lipid secretion. Adenovirus-mediated hepatic expression of either constitutively active AKT or dominant negative glycogen synthase kinase (GSK) markedly increased VLDL and LDL levels such that they were similar in both Ldlr–/– and L1B6Ldlr–/– mice. Knocking down expression of hepatic IR by adenovirus-mediated shRNA decreased VLDL triglyceride and apoB secretion in Ldlr–/– mice. Furthermore, knocking down hepatic IR expression in either WT or ob/ob mice reduced VLDL secretion but also resulted in decreased hepatic Ldlr protein. These findings suggest a dual action of hepatic IR on lipoprotein levels, in which the ability to increase VLDL apoB and lipid secretion via AKT/GSK is offset by upregulation of Ldlr.

Authors

Seongah Han, Chien-Ping Liang, Marit Westerterp, Takafumi Senokuchi, Carrie L. Welch, Qizhi Wang, Michihiro Matsumoto, Domenico Accili, Alan R. Tall

×

Figure 7

The effect of AKT downstream effectors FoxO1 and mTOR on plasma apoB levels.

Options: View larger image (or click on image) Download as PowerPoint
The effect of AKT downstream effectors FoxO1 and mTOR on plasma apoB lev...
(A) Plasma VLDL and LDL apoB levels in FoxO1-overexpressing mice. Ten-week-old Ldlr–/– mice were injected with empty adenovirus or different dosages (× 107 PFU/g body weight) of FoxO1-ADA. Four days after adenovirus injection, livers and plasma samples were collected after a 5-hour fast. Upper panel is representative of Western blot analysis of plasma lipoprotein fractions after hepatic FoxO1 expression. Similar results were obtained in 2 other experiments. (B) Tg production in WTD-fed Ldlr–/– mice treated with control empty adenovirus (open squares) or FoxO1-ADA (filled squares). Tg production was determined at indicated times after Triton WR-1339 injection (n = 4). (C) apoB levels in mice treated with mTOR inhibitor (rapamycin [Rapa]). Ldlr–/– mice fed chow received saline/DMSO with or without rapamycin (0.1 μg/g or 1 μg/g body weight). (D) Plasma cholesterol (filled squares) and Tg levels (filled circles) from data shown in C. n = 3–4; *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts