Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Active sodium-urea counter-transport is inducible in the basolateral membrane of rat renal initial inner medullary collecting ducts.
A Kato, J M Sands
A Kato, J M Sands
Published September 1, 1998
Citation Information: J Clin Invest. 1998;102(5):1008-1015. https://doi.org/10.1172/JCI3588.
View: Text | PDF
Research Article

Active sodium-urea counter-transport is inducible in the basolateral membrane of rat renal initial inner medullary collecting ducts.

  • Text
  • PDF
Abstract

Rat inner medullary collecting ducts (IMCD3s) possess a luminal Na+-dependent, active urea secretory transport process, which is upregulated by water diuresis. In this study of perfused IMCDs microdissected from base (IMCD1), middle (IMCD2), or tip (IMCD3) of the inner medulla, we tested whether furosemide diuresis alters active urea transport. Rats received furosemide (10 mg/d s.c. for 3-4 d) and were compared with pair-fed control rats. Furosemide significantly decreased urine osmolality and urea clearance, and increased blood urea nitrogen. IMCD3s from furosemide-treated rats had significantly lower rates of active urea secretion than IMCD3s from control rats. IMCD2s showed no active urea transport in control or furosemide-treated rats. IMCD1s from control rats had no active urea transport, but IMCD1s from furosemide-treated rats expressed significant rates of active urea reabsorption. In IMCD1s, this active urea reabsorptive transport process was inhibited by: (i) 0. 25 mM phloretin (bath); (ii) 1 mM ouabain (bath); and (iii) replacing bath Na+ with NMDG+; it was stimulated by 10 nM bumetanide (bath). In summary, we found that furosemide decreased active urea secretion in IMCD3s and induced active urea reabsorption in IMCD1s. The new Na+- dependent, active urea reabsorptive transport process may be a basolateral Na+-urea antiporter.

Authors

A Kato, J M Sands

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 147 31
PDF 47 20
Citation downloads 44 0
Totals 238 51
Total Views 289
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts