Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans
Alessia Omenetti, Alessandro Porrello, Youngmi Jung, Liu Yang, Yury Popov, Steve S. Choi, Rafal P. Witek, Gianfranco Alpini, Juliet Venter, Hendrika M. Vandongen, Wing-Kin Syn, Gianluca Svegliati Baroni, Antonio Benedetti, Detlef Schuppan, Anna Mae Diehl
Alessia Omenetti, Alessandro Porrello, Youngmi Jung, Liu Yang, Yury Popov, Steve S. Choi, Rafal P. Witek, Gianfranco Alpini, Juliet Venter, Hendrika M. Vandongen, Wing-Kin Syn, Gianluca Svegliati Baroni, Antonio Benedetti, Detlef Schuppan, Anna Mae Diehl
View: Text | PDF
Research Article

Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans

  • Text
  • PDF
Abstract

Epithelial-mesenchymal transitions (EMTs) play an important role in tissue construction during embryogenesis, and evidence suggests that this process may also help to remodel some adult tissues after injury. Activation of the hedgehog (Hh) signaling pathway regulates EMT during development. This pathway is also induced by chronic biliary injury, a condition in which EMT has been suggested to have a role. We evaluated the hypothesis that Hh signaling promotes EMT in adult bile ductular cells (cholangiocytes). In liver sections from patients with chronic biliary injury and in primary cholangiocytes isolated from rats that had undergone bile duct ligation (BDL), an experimental model of biliary fibrosis, EMT was localized to cholangiocytes with Hh pathway activity. Relief of ductal obstruction in BDL rats reduced Hh pathway activity, EMT, and biliary fibrosis. In mouse cholangiocytes, coculture with myofibroblastic hepatic stellate cells, a source of soluble Hh ligands, promoted EMT and cell migration. Addition of Hh-neutralizing antibodies to cocultures blocked these effects. Finally, we found that EMT responses to BDL were enhanced in patched-deficient mice, which display excessive activation of the Hh pathway. Together, these data suggest that activation of Hh signaling promotes EMT and contributes to the evolution of biliary fibrosis during chronic cholestasis.

Authors

Alessia Omenetti, Alessandro Porrello, Youngmi Jung, Liu Yang, Yury Popov, Steve S. Choi, Rafal P. Witek, Gianfranco Alpini, Juliet Venter, Hendrika M. Vandongen, Wing-Kin Syn, Gianluca Svegliati Baroni, Antonio Benedetti, Detlef Schuppan, Anna Mae Diehl

×

Figure 8

Myofibroblast-derived soluble factors increase motility/migration in cocultured cholangiocytes.

Options: View larger image (or click on image) Download as PowerPoint
Myofibroblast-derived soluble factors increase motility/migration in coc...
(A–F) Cell migration was assessed by wound-healing assay. Cholangiocytes were cultured in the absence (A and B) or presence (C–F) of Transwell filter inserts containing MF-HSCs for 6 days; cholangiocyte monolayers were then scratched, and an image was acquired immediately (time 0; A, C, and E) and 18 hours later after treatment with control IgG (B, D, and black bars) or Hh-neutralizing antibody (NAb) (F and gray bars). Cholangiocyte migration was quantified by measuring the distance dividing the 2 sides of the monolayer using Image J software (G) and by counting the numbers of cells that had migrated into the wound after 18 hours (H). **P < 0.005 versus monocultures, time 0 (G) or IgG-treated monoculture (H); #P < 0.005 versus IgG-treated coculture. Original magnification, ×10 (A–F). The dashed lines (A–F) indicate the leading edge of the cut that was made across the monolayers.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts