Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets
Kim Cheng, … , C. Ronald Kahn, Jenny E. Gunton
Kim Cheng, … , C. Ronald Kahn, Jenny E. Gunton
Published May 3, 2010
Citation Information: J Clin Invest. 2010;120(6):2171-2183. https://doi.org/10.1172/JCI35846.
View: Text | PDF
Research Article Metabolism

Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets

  • Text
  • PDF
Abstract

Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that regulates cellular stress responses. While the levels of HIF-1α protein are tightly regulated, recent studies suggest that it can be active under normoxic conditions. We hypothesized that HIF-1α is required for normal β cell function and reserve and that dysregulation may contribute to the pathogenesis of type 2 diabetes (T2D). Here we show that HIF-1α protein is present at low levels in mouse and human normoxic β cells and islets. Decreased levels of HIF-1α impaired glucose-stimulated ATP generation and β cell function. C57BL/6 mice with β cell–specific Hif1a disruption (referred to herein as β-Hif1a-null mice) exhibited glucose intolerance, β cell dysfunction, and developed severe glucose intolerance on a high-fat diet. Increasing HIF-1α levels by inhibiting its degradation through iron chelation markedly improved insulin secretion and glucose tolerance in control mice fed a high-fat diet but not in β-Hif1a-null mice. Increasing HIF-1α levels markedly increased expression of ARNT and other genes in human T2D islets and improved their function. Further analysis indicated that HIF-1α was bound to the Arnt promoter in a mouse β cell line, suggesting direct regulation. Taken together, these findings suggest an important role for HIF-1α in β cell reserve and regulation of ARNT expression and demonstrate that HIF-1α is a potential therapeutic target for the β cell dysfunction of T2D.

Authors

Kim Cheng, Kenneth Ho, Rebecca Stokes, Christopher Scott, Sue Mei Lau, Wayne J. Hawthorne, Philip J. O’Connell, Thomas Loudovaris, Thomas W. Kay, Rohit N. Kulkarni, Terumasa Okada, Xiaohui L. Wang, Sun Hee Yim, Yatrik Shah, Shane T. Grey, Andrew V. Biankin, James G. Kench, D. Ross Laybutt, Frank J. Gonzalez, C. Ronald Kahn, Jenny E. Gunton

×

Figure 3

Decreasing Hif1a by RNAi-impaired β cell function, gene expression, and ATP generation.

Options: View larger image (or click on image) Download as PowerPoint
Decreasing Hif1a by RNAi-impaired β cell function, gene expression, and ...
(A) RNAi decreased Hif1a mRNA. (B) Hif1a RNAi decreased GSIS in Min6 cells and caused a small decrease in KCl-stimulated insulin release. (C) Combination RNAi treatment caused slightly more severe impairment in insulin release. (D) Hif1a RNAi decreased expression of genes from the MODY family and (E) glucose-uptake and glycolysis genes. (F) Hif1a RNAi decreased basal and glucose-stimulated ATP concentrations. *P < 0.05, **P < 0.01, and ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts