The amyloid β (Aβ) peptide is thought to be a major culprit in Alzheimer disease (AD), and its production and degradation have been intensely investigated. Nevertheless, it remains largely unknown how Aβ pathology is modulated by the autophagy pathway. The study by Pickford and colleagues in this issue of the JCI shows that beclin 1, a multifunctional protein that also plays an important role in the autophagy pathway, affects some aspects of Aβ pathology in aged but not young transgenic mice expressing amyloid precursor protein (APP) (see the related article beginning on page 2190). These findings further support the notion that modulation of autophagy, in this case through beclin 1, may represent a novel therapeutic strategy for AD.
Jin-A Lee, Fen-Biao Gao
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 350 | 39 |
145 | 26 | |
Figure | 110 | 4 |
Citation downloads | 45 | 0 |
Totals | 650 | 69 |
Total Views | 719 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.