Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Misfolded proteins activate Factor XII in humans, leading to kallikrein formation without initiating coagulation
Coen Maas, José W.P. Govers-Riemslag, Barend Bouma, Bettina Schiks, Bouke P.C. Hazenberg, Henk M. Lokhorst, Per Hammarström, Hugo ten Cate, Philip G. de Groot, Bonno N. Bouma, Martijn F.B.G. Gebbink
Coen Maas, José W.P. Govers-Riemslag, Barend Bouma, Bettina Schiks, Bouke P.C. Hazenberg, Henk M. Lokhorst, Per Hammarström, Hugo ten Cate, Philip G. de Groot, Bonno N. Bouma, Martijn F.B.G. Gebbink
View: Text | PDF
Research Article

Misfolded proteins activate Factor XII in humans, leading to kallikrein formation without initiating coagulation

  • Text
  • PDF
Abstract

When blood is exposed to negatively charged surface materials such as glass, an enzymatic cascade known as the contact system becomes activated. This cascade is initiated by autoactivation of Factor XII and leads to both coagulation (via Factor XI) and an inflammatory response (via the kallikrein-kinin system). However, while Factor XII is important for coagulation in vitro, it is not important for physiological hemostasis, so the physiological role of the contact system remains elusive. Using patient blood samples and isolated proteins, we identified a novel class of Factor XII activators. Factor XII was activated by misfolded protein aggregates that formed by denaturation or by surface adsorption, which specifically led to the activation of the kallikrein-kinin system without inducing coagulation. Consistent with this, we found that Factor XII, but not Factor XI, was activated and kallikrein was formed in blood from patients with systemic amyloidosis, a disease marked by the accumulation and deposition of misfolded plasma proteins. These results show that the kallikrein-kinin system can be activated by Factor XII, in a process separate from the coagulation cascade, and point to a protective role for Factor XII following activation by misfolded protein aggregates.

Authors

Coen Maas, José W.P. Govers-Riemslag, Barend Bouma, Bettina Schiks, Bouke P.C. Hazenberg, Henk M. Lokhorst, Per Hammarström, Hugo ten Cate, Philip G. de Groot, Bonno N. Bouma, Martijn F.B.G. Gebbink

×

Figure 3

FXII-dependent kallikrein generation by surfaces is modulated by cofactor proteins.

Options: View larger image (or click on image) Download as PowerPoint
FXII-dependent kallikrein generation by surfaces is modulated by cofacto...
Surfaces were incubated for 5 minutes at 37°C with 3 different proteins, BSA (A), endostatin (B) and Fg (C) and analyzed for their ability to induce FXII-dependent kallikrein generation. It was found that addition of these proteins was required for FXII activation by kaolin, EA, and DXS-500k. All other possible combinations of the above proteins with surfaces gave the same results (Supplemental Figure 3). The values in the graphs represent the mean ± SEM of duplicate determinations performed within 1 representative experiment of at least 3.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts