Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice
Guoqing Sheng, Xingshun Xu, Yung-Feng Lin, Chuan-En Wang, Juan Rong, Dongmei Cheng, Junmin Peng, Xiaoyan Jiang, Shi-Hua Li, Xiao-Jiang Li
Guoqing Sheng, Xingshun Xu, Yung-Feng Lin, Chuan-En Wang, Juan Rong, Dongmei Cheng, Junmin Peng, Xiaoyan Jiang, Shi-Hua Li, Xiao-Jiang Li
View: Text | PDF
Research Article Development

Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice

  • Text
  • PDF
Abstract

Joubert syndrome is an autosomal recessive disorder characterized by congenital malformation of the cerebellum and brainstem, with abnormal decussation in the brain. Mutations in the Abelson helper integration site 1 gene, which encodes the protein AHI1, have been shown to cause Joubert syndrome. In this study, we found that mouse Ahi1 formed a stable complex with huntingtin-associated protein 1 (Hap1), which is critical for neonatal development and involved in intracellular trafficking. Hap1-knockout mice showed significantly reduced Ahi1 levels, defective cerebellar development, and abnormal axonal decussation. Suppression of Ahi1 also decreased the level of Hap1; and truncated Ahi1, which corresponds to the mutations in Joubert syndrome, inhibited neurite outgrowth in neuronal culture. Reducing Hap1 expression suppressed the level and internalization of TrkB, a neurotrophic factor receptor that mediates neurogenesis and neuronal differentiation, which led to decreased TrkB signaling. These findings provide insight into the pathogenesis of Joubert syndrome and demonstrate the critical role of the Ahi1-Hap1 complex in early brain development.

Authors

Guoqing Sheng, Xingshun Xu, Yung-Feng Lin, Chuan-En Wang, Juan Rong, Dongmei Cheng, Junmin Peng, Xiaoyan Jiang, Shi-Hua Li, Xiao-Jiang Li

×

Figure 7

Hap1 deficiency decreases TrkB internalization and signaling.

Options: View larger image (or click on image) Download as PowerPoint
Hap1 deficiency decreases TrkB internalization and signaling.
(A) Double...
(A) Double immunostaining of cultured brainstem cells (at 14 DIV) that had been infected with adenoviral GFP (top row) or adenoviral Hap1 siRNA with GFP (bottom row). Note that cells expressing Hap1 siRNA (green) show a decrease in the amount of internalized biotin-labeled BDNF compared with a noninfected cell or adenoviral GFP–infected cell. (B) Double immunostaining of cultured brainstem cells from WT (top row) and Hap1-KO (bottom row) pups also shows the decreased Hap1 and internalization of biotin-BDNF. The cells were stained with rabbit anti-Hap1 and mouse anti-biotin. Statistical results are described in the text. Scale bars in A and B: 5 μm. (C) Decreased phosphorylation of Erk and Akt in cultured brainstem cells infected by adenoviral Hap1 siRNA. The blots were probed with antibodies against Akt, Erk, and their phosphorylated forms. (D) The ratio (mean ± SEM; n = 3–4) of phosphorylated Erk or Akt to total Erk or Akt was quantified by densitometry. *P < 0.05, **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts