Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The FGF system has a key role in regulating vascular integrity
Masahiro Murakami, Loc T. Nguyen, Zhen W. Zhang, Karen L. Moodie, Peter Carmeliet, Radu V. Stan, Michael Simons
Masahiro Murakami, Loc T. Nguyen, Zhen W. Zhang, Karen L. Moodie, Peter Carmeliet, Radu V. Stan, Michael Simons
View: Text | PDF | Corrigendum
Research Article Vascular biology

The FGF system has a key role in regulating vascular integrity

  • Text
  • PDF
Abstract

The integrity of the endothelial monolayer is essential to blood vessel homeostasis and active regulation of endothelial permeability. The FGF system plays important roles in a wide variety of physiologic and pathologic conditions; however, its role in the adult vasculature has not been defined. To assess the role of the FGF system in the adult endothelial monolayer, we disrupted FGF signaling in bovine aortic endothelial cells and human saphenous vein endothelial cells in vitro and in adult mouse and rat endothelial cells in vivo using soluble FGF traps or a dominant inhibitor of all FGF receptors. The inhibition of FGF signaling using these approaches resulted in dissociation of the VE-cadherin/p120-catenin complex and disassembly of adherens and tight junctions, which progressed to loss of endothelial cells, severe impairment of the endothelial barrier function, and finally, disintegration of the vasculature. Thus, FGF signaling plays a key role in the maintenance of vascular integrity.

Authors

Masahiro Murakami, Loc T. Nguyen, Zhen W. Zhang, Karen L. Moodie, Peter Carmeliet, Radu V. Stan, Michael Simons

×

Figure 8

FGF treatment maintains EC junctions and decreases endothelial permeability in vitro.

Options: View larger image (or click on image) Download as PowerPoint
FGF treatment maintains EC junctions and decreases endothelial permeabil...
(A) ECIS permeability assay using confluent monolayer. BAECs are matured to full confluency and the medium was replaced to 1% BSA in EBM-2 (Cambrex). FGF1 (1 ng/ml) or 1% BSA/EBM-2 was added at the indicated time point (arrow). Six hours later, VEGF-A (25 ng/ml) or 1% BSA/EBM2 was added at the indicated time point (arrow). At 6 hours, FGF treatment significantly increased monolayer impedance compared with the control treatment. (B) FGF treatment does not induce junction disruption on endothelial cell monolayers. BAECs are matured to full confluency, starved with 1% BSA in EBM-2 for 48 hours, and treated with either FGF1 (50 ng/ml) or VEGF (80 ng/ml) for 30 minutes Note with this condition, VEGF rapidly disrupts endothelial cell junctions (white arrows) whereas FGF treatment maintains junctions similar to those in the control monolayer. Scale bars: 20 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts