Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Congenital myasthenia–related AChR δ subunit mutation interferes with intersubunit communication essential for channel gating
Xin-Ming Shen, … , Steven M. Sine, Andrew G. Engel
Xin-Ming Shen, … , Steven M. Sine, Andrew G. Engel
Published April 8, 2008
Citation Information: J Clin Invest. 2008;118(5):1867-1876. https://doi.org/10.1172/JCI34527.
View: Text | PDF
Research Article Muscle biology

Congenital myasthenia–related AChR δ subunit mutation interferes with intersubunit communication essential for channel gating

  • Text
  • PDF
Abstract

Congenital myasthenias (CMs) arise from defects in neuromuscular junction–associated proteins. Deciphering the molecular bases of the CMs is required for therapy and illuminates structure-function relationships in these proteins. Here, we analyze the effects of a mutation in 1 of 4 homologous subunits in the AChR from a CM patient, a Leu to Pro mutation at position 42 of the δ subunit. The mutation is located in a region of contact between subunits required for rapid opening of the AChR channel and impedes the rate of channel opening. Substitutions of Gly, Lys, or Asp for δL42, or substitutions of Pro along the local protein chain, also slowed channel opening. Substitution of Pro for Leu in the ε subunit slowed opening, whereas this substitution had no effect in the β subunit and actually sped opening in the α subunit. Analyses of energetic coupling between residues at the subunit interface showed that δL42 is functionally linked to αT127, a key residue in the adjacent α subunit required for rapid channel opening. Thus, δL42 is part of an intersubunit network that enables ACh binding to rapidly open the AChR channel, which may be compromised in patients with CM.

Authors

Xin-Ming Shen, Taku Fukuda, Kinji Ohno, Steven M. Sine, Andrew G. Engel

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts