Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice
Farah Sheikh, Anna Raskin, Pao-Hsien Chu, Stephan Lange, Andrea A. Domenighetti, Ming Zheng, Xingqun Liang, Tong Zhang, Toshitaka Yajima, Yusu Gu, Nancy D. Dalton, Sushil K. Mahata, Gerald W. Dorn II, Joan Heller-Brown, Kirk L. Peterson, Jeffrey H. Omens, Andrew D. McCulloch, Ju Chen
Farah Sheikh, Anna Raskin, Pao-Hsien Chu, Stephan Lange, Andrea A. Domenighetti, Ming Zheng, Xingqun Liang, Tong Zhang, Toshitaka Yajima, Yusu Gu, Nancy D. Dalton, Sushil K. Mahata, Gerald W. Dorn II, Joan Heller-Brown, Kirk L. Peterson, Jeffrey H. Omens, Andrew D. McCulloch, Ju Chen
View: Text | PDF | Corrigendum
Research Article Cardiology

An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice

  • Text
  • PDF
Abstract

The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the dysfunction of these pathways may lead to disease. Here, we found that four-and-a-half LIM domains 1 (FHL1) is part of a complex within the cardiomyocyte sarcomere that senses the biomechanical stress–induced responses important for cardiac hypertrophy. Mice lacking Fhl1 displayed a blunted hypertrophic response and a beneficial functional response to pressure overload induced by transverse aortic constriction. A link to the Gαq (Gq) signaling pathway was also observed, as Fhl1 deficiency prevented the cardiomyopathy observed in Gq transgenic mice. Mechanistic studies demonstrated that FHL1 plays an important role in the mechanism of pathological hypertrophy by sensing biomechanical stress responses via the N2B stretch sensor domain of titin and initiating changes in the titin- and MAPK-mediated responses important for sarcomere extensibility and intracellular signaling. These studies shed light on the physiological regulation of the sarcomere in response to hypertrophic stress.

Authors

Farah Sheikh, Anna Raskin, Pao-Hsien Chu, Stephan Lange, Andrea A. Domenighetti, Ming Zheng, Xingqun Liang, Tong Zhang, Toshitaka Yajima, Yusu Gu, Nancy D. Dalton, Sushil K. Mahata, Gerald W. Dorn II, Joan Heller-Brown, Kirk L. Peterson, Jeffrey H. Omens, Andrew D. McCulloch, Ju Chen

×

Figure 4

Muscle mechanics within isolated adult WT and Fhl1-deficient cardiac muscles following stretch.

Options: View larger image (or click on image) Download as PowerPoint
Muscle mechanics within isolated adult WT and Fhl1-deficient cardiac mus...
(A) Schematic representation of isolated adult RV papillary mouse muscle from 8- to 12-week-old mice in a tissue chamber. Specimens were stretched for 5 hours to a maximum extension of 15%–20% (90%–95% Lmax). Control muscles were left in the system for the same period of time at slack length. The system was used to analyze load-inducible hypertrophic markers as well as passive and active stresses as a function of passive stretch. (B) Quantitative assessment of cross-sectional area and slack sarcomere lengths in WT and Fhl1-deficient muscles. (C) Passive tensile stress (diastolic stress) of RV papillary muscles in WT and KO muscles before and after stretch. Sarcomere lengths in WT and KO muscles at 20 kPa stress. *P < 0.05. (D) Active mechanical properties were assessed in isolated WT and KO muscles as a function of stretch.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts