Although the differentiation of ES cells to cardiomyocytes has been firmly established, the extent to which corresponding cardiac precursor cells can contribute to other cardiac populations remains unclear. To determine the molecular and cellular characteristics of cardiac-fated populations derived from mouse ES (mES) cells, we isolated cardiac progenitor cells (CPCs) from differentiating mES cell cultures by using a reporter cell line that expresses GFP under the control of a cardiac-specific enhancer element of Nkx2-5, a transcription factor expressed early in cardiac development. This ES cell–derived CPC population initially expressed genetic markers of both stem cells and mesoderm, while differentiated CPCs displayed markers of 3 distinct cell lineages (cardiomyocytes, vascular smooth muscle cells, and endothelial cells) — Flk1 (also known as Kdr), c-Kit, and Nkx2-5, but not Brachyury — and subsequently expressed Isl1. Clonally derived CPCs also demonstrated this multipotent phenotype. By transcription profiling of CPCs, we found that mES cell–derived CPCs displayed a transcriptional signature that paralleled in vivo cardiac development. Additionally, these studies suggested the involvement of genes that we believe were previously unknown to play a role in cardiac development. Taken together, our data demonstrate that ES cell–derived CPCs comprise a multipotent precursor population capable of populating multiple cardiac lineages and suggest that ES cell differentiation is a valid model for studying development of multiple cardiac-fated tissues.
Nicolas Christoforou, Ronald A. Miller, Christine M. Hill, Chunfa C. Jie, Andrew S. McCallion, John D. Gearhart
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 386 | 53 |
73 | 19 | |
Figure | 310 | 8 |
Supplemental data | 223 | 6 |
Citation downloads | 75 | 0 |
Totals | 1,067 | 86 |
Total Views | 1,153 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.