Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
17β-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia
Ray D. Coakley, … , Steven L. Young, Robert Tarran
Ray D. Coakley, … , Steven L. Young, Robert Tarran
Published November 20, 2008
Citation Information: J Clin Invest. 2008;118(12):4025-4035. https://doi.org/10.1172/JCI33893.
View: Text | PDF
Research Article

17β-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia

  • Text
  • PDF
Abstract

Normal airways homeostatically regulate the volume of airway surface liquid (ASL) through both cAMP- and Ca2+-dependent regulation of ion and water transport. In cystic fibrosis (CF), a genetic defect causes a lack of cAMP-regulated CFTR activity, leading to diminished Cl– and water secretion from airway epithelial cells and subsequent mucus plugging, which serves as the focus for infections. Females with CF exhibit reduced survival compared with males with CF, although the mechanisms underlying this sex-related disadvantage are unknown. Despite the lack of CFTR, CF airways retain a limited capability to regulate ASL volume, as breathing-induced ATP release activates salvage purinergic pathways that raise intracellular Ca2+ concentration to stimulate an alternate pathway to Cl– secretion. We hypothesized that estrogen might affect this pathway by reducing the ability of airway epithelia to respond appropriately to nucleotides. We found that uridine triphosphate–mediated (UTP-mediated) Cl– secretion was reduced during the periovulatory estrogen maxima in both women with CF and normal, healthy women. Estrogen also inhibited Ca2+ signaling and ASL volume homeostasis in non-CF and CF airway epithelia by attenuating Ca2+ influx. This inhibition of Ca2+ signaling was prevented and even potentiated by estrogen antagonists such as tamoxifen, suggesting that antiestrogens may be beneficial in the treatment of CF lung disease because they increase Cl– secretion in the airways.

Authors

Ray D. Coakley, Hengrui Sun, Lucy A. Clunes, Julia E. Rasmussen, James R. Stackhouse, Seiko F. Okada, Ingrid Fricks, Steven L. Young, Robert Tarran

×

Figure 5

E2 does not induce P2Y2-R internalization.

Options: View larger image (or click on image) Download as PowerPoint
E2 does not induce P2Y2-R internalization.
   
BHK cells were transfecte...
BHK cells were transfected with HA-tagged P2Y2-R (green) ± mOr-ERα (red) and fixed in PFA after E2/ATP addition. (A–C) Sequential images of HA–P2Y2-R before E2 addition, 30 minutes after 10 nM E2 exposure, and 30 minutes after the addition of 100 μM ATP in the presence of E2, respectively. (D–F) P2Y2-R cotransfected with mOr-ERα before and after 30-minute 10 nM E2 exposure and 30 minutes after the addition of 100 μM ATP in the presence of E2. (G) Bar graph quantifying HA–P2Y2-R internalization to the area measured. White bars, HA–P2Y2-R alone; black bars, HA–P2Y2-R and ERα. Data are from transfections performed on 3 separate occasions. Scale bars: 10 μm. *P < 0.05 versus E2 alone.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts