Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation
Dhaya Seshasayee, Wyne P. Lee, Meijuan Zhou, Jean Shu, Eric Suto, Juan Zhang, Laurie Diehl, Cary D. Austin, Y. Gloria Meng, Martha Tan, Sherron L. Bullens, Stefan Seeber, Maria E. Fuentes, Aran F. Labrijn, Yvo M.F. Graus, Lisa A. Miller, Edward S. Schelegle, Dallas M. Hyde, Lawren C. Wu, Sarah G. Hymowitz, Flavius Martin
Dhaya Seshasayee, Wyne P. Lee, Meijuan Zhou, Jean Shu, Eric Suto, Juan Zhang, Laurie Diehl, Cary D. Austin, Y. Gloria Meng, Martha Tan, Sherron L. Bullens, Stefan Seeber, Maria E. Fuentes, Aran F. Labrijn, Yvo M.F. Graus, Lisa A. Miller, Edward S. Schelegle, Dallas M. Hyde, Lawren C. Wu, Sarah G. Hymowitz, Flavius Martin
View: Text | PDF
Research Article

In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation

  • Text
  • PDF
Abstract

Thymic stromal lymphopoietin (TSLP) potently induces deregulation of Th2 responses, a hallmark feature of allergic inflammatory diseases such as asthma, atopic dermatitis, and allergic rhinitis. However, direct downstream in vivo mediators in the TSLP-induced atopic immune cascade have not been identified. In our current study, we have shown that OX40 ligand (OX40L) is a critical in vivo mediator of TSLP-mediated Th2 responses. Treating mice with OX40L-blocking antibodies substantially inhibited immune responses induced by TSLP in the lung and skin, including Th2 inflammatory cell infiltration, cytokine secretion, and IgE production. OX40L-blocking antibodies also inhibited antigen-driven Th2 inflammation in mouse and nonhuman primate models of asthma. This treatment resulted in both blockade of the OX40-OX40L receptor-ligand interaction and depletion of OX40L-positive cells. The use of a blocking, OX40L-specific mAb thus presents a promising strategy for the treatment of allergic diseases associated with pathologic Th2 immune responses.

Authors

Dhaya Seshasayee, Wyne P. Lee, Meijuan Zhou, Jean Shu, Eric Suto, Juan Zhang, Laurie Diehl, Cary D. Austin, Y. Gloria Meng, Martha Tan, Sherron L. Bullens, Stefan Seeber, Maria E. Fuentes, Aran F. Labrijn, Yvo M.F. Graus, Lisa A. Miller, Edward S. Schelegle, Dallas M. Hyde, Lawren C. Wu, Sarah G. Hymowitz, Flavius Martin

×

Figure 2

α-mOX40L mAb blocks TSLP-induced inflammation in skin.

Options: View larger image (or click on image) Download as PowerPoint
α-mOX40L mAb blocks TSLP-induced inflammation in skin.
BALB/c mice (n = ...
BALB/c mice (n = 5/group) were administered TSLP or control saline subcutaneously in the ear on days, 0, 2, 4, 7, and 9 and treated with 150 μg mIgG2a or α-mOX40L 4F5 mAb twice weekly, starting on day 0. (A) Ear thickness was measured every 3 days, and increase over baseline over the course of the study is shown. (B) Quantitative RT-PCR was performed on RNA isolated from ears of individual mice harvested terminally on day 21. Effects of α-OX40L mAb treatment on transcript levels of IL-4, IL-5, and IL-13 are shown with control mIgG2a set at a 100. Average Ct values for IL-4, IL-5, and IL-13 for the mIgG2a control group were 26.7, 24.2, and 22.4 respectively, and for the α-OX40L mAb treated group, were 29.4, 28.8, and 27.6 respectively. (C) Levels of total serum IgE on day 21 were measured by ELISA and are shown. Results are mean ± SD. *P < 0.01 (Dunnett’s test).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts