Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia
Serena Y. Tan, … , Linda Leatherbury, Cecilia W. Lo
Serena Y. Tan, … , Linda Leatherbury, Cecilia W. Lo
Published November 21, 2007
Citation Information: J Clin Invest. 2007;117(12):3742-3752. https://doi.org/10.1172/JCI33284.
View: Text | PDF
Research Article Development

Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia

  • Text
  • PDF
Abstract

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder associated with ciliary defects and situs inversus totalis, the complete mirror image reversal of internal organ situs (positioning). A variable incidence of heterotaxy, or irregular organ situs, also has been reported in PCD patients, but it is not known whether this is elicited by the PCD-causing genetic lesion. We studied a mouse model of PCD with a recessive mutation in Dnahc5, a dynein gene commonly mutated in PCD. Analysis of homozygous mutant embryos from 18 litters yielded 25% with normal organ situs, 35% with situs inversus totalis, and 40% with heterotaxy. Embryos with heterotaxy had complex structural heart defects that included discordant atrioventricular and ventricular outflow situs and atrial/pulmonary isomerisms. Variable combinations of a distinct set of cardiovascular anomalies were observed, including superior-inferior ventricles, great artery alignment defects, and interrupted inferior vena cava with azygos continuation. The surprisingly high incidence of heterotaxy led us to evaluate the diagnosis of PCD. PCD was confirmed by EM, which revealed missing outer dynein arms in the respiratory cilia. Ciliary dyskinesia was observed by videomicroscopy. These findings show that Dnahc5 is required for the specification of left-right asymmetry and suggest that the PCD-causing Dnahc5 mutation may also be associated with heterotaxy.

Authors

Serena Y. Tan, Julie Rosenthal, Xiao-Qing Zhao, Richard J. Francis, Bishwanath Chatterjee, Steven L. Sabol, Kaari L. Linask, Luciann Bracero, Patricia S. Connelly, Mathew P. Daniels, Qing Yu, Heymut Omran, Linda Leatherbury, Cecilia W. Lo

×

Figure 6

Necropsies showing outflow tract defects in Dnahc5del593 mutants.

Options: View larger image (or click on image) Download as PowerPoint
Necropsies showing outflow tract defects in Dnahc5del593 mutants.
      ...
(A) D-malposition of great vessels is shown with levocardia with anterior and rightward Ao relative to the PA. EFIC analysis showed that this heart was D-looped with D-TGA. (B) Dextrocardia with anterior and leftward aorta indicating L-malposition of great vessels. EFIC showed this was a D-looped heart with L-TGA. (C) Mesocardia with parallel great vessels and right-sided aorta, i.e., D-malposition. EFIC showed that this heart was D-looped with D-TGA. (D) Dextrocardia with parallel great vessels and left-sided aorta, i.e., L-malposition. EFIC showed that this heart was D-looped with DORV. Scale bar: 1 mm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts