Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice
Julia Yuen-Shan Tsang, … , Giovanna Lombardi, Robert Lechler
Julia Yuen-Shan Tsang, … , Giovanna Lombardi, Robert Lechler
Published October 9, 2008
Citation Information: J Clin Invest. 2008;118(11):3619-3628. https://doi.org/10.1172/JCI33185.
View: Text | PDF
Research Article Transplantation

Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice

  • Text
  • PDF
Abstract

T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential.

Authors

Julia Yuen-Shan Tsang, Yakup Tanriver, Shuiping Jiang, Shao-An Xue, Kulachelvy Ratnasothy, Daxin Chen, Hans J. Stauss, R. Pat Bucy, Giovanna Lombardi, Robert Lechler

×

Figure 3

Retroviral transduction did not alter Treg phenotypes and function.

Options: View larger image (or click on image) Download as PowerPoint
Retroviral transduction did not alter Treg phenotypes and function.
(A) ...
(A) TCR-transduced Tregs or nontransduced Tregs were stained with anti-CD62L–FITC, anti-CD3–FITC, anti-CD25–PE, and anti-FoxP3–APC at the end of weekly stimulation. (B) CD4+ T cells from BL/6 mice were cocultured either with an increasing number of TCR-transduced Tregs (black bars) or nontransduced Tregs with direct allospecificity (gray bars) in the presence of T cell–depleted BL/6 APCs and 1 μg/ml anti-CD3. CD4+ T cells (CD4 only) or Treg lines (CD25+ only) cultured with T cell–depleted splenocytes and anti-CD3 were used as controls. T cell proliferation was measured at day 3 by [3H]thymidine incorporation. Error bars represent mean ± SD of experiments performed in triplicate.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts