Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity
Yuka Ichikawa-Shindo, Takayuki Sakurai, Akiko Kamiyoshi, Hisaka Kawate, Nobuyoshi Iinuma, Takahiro Yoshizawa, Teruhide Koyama, Junichi Fukuchi, Satoshi Iimuro, Nobuo Moriyama, Hayato Kawakami, Toshinori Murata, Kenji Kangawa, Ryozo Nagai, Takayuki Shindo
Yuka Ichikawa-Shindo, Takayuki Sakurai, Akiko Kamiyoshi, Hisaka Kawate, Nobuyoshi Iinuma, Takahiro Yoshizawa, Teruhide Koyama, Junichi Fukuchi, Satoshi Iimuro, Nobuo Moriyama, Hayato Kawakami, Toshinori Murata, Kenji Kangawa, Ryozo Nagai, Takayuki Shindo
View: Text | PDF
Research Article

The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity

  • Text
  • PDF
Abstract

Adrenomedullin (AM) is a peptide involved both in the pathogenesis of cardiovascular diseases and in circulatory homeostasis. The high-affinity AM receptor is composed of receptor activity–modifying protein 2 or 3 (RAMP2 or -3) and the GPCR calcitonin receptor–like receptor. Testing our hypothesis that RAMP2 is a key determinant of the effects of AM on the vasculature, we generated and analyzed mice lacking RAMP2. Similar to AM–/– embryos, RAMP2–/– embryos died in utero at midgestation due to vascular fragility that led to severe edema and hemorrhage. Vascular ECs in RAMP2–/– embryos were severely deformed and detached from the basement membrane. In addition, the abnormally thin arterial walls of these mice had a severe disruption of their typically multilayer structure. Expression of tight junction, adherence junction, and basement membrane molecules by ECs was diminished in RAMP2–/– embryos, leading to paracellular leakage and likely contributing to the severe edema observed. In adult RAMP2+/– mice, reduced RAMP2 expression led to vascular hyperpermeability and impaired neovascularization. Conversely, ECs overexpressing RAMP2 had enhanced capillary formation, firmer tight junctions, and reduced vascular permeability. Our findings in human cells and in mice demonstrate that RAMP2 is a key determinant of the effects of AM on the vasculature and is essential for angiogenesis and vascular integrity.

Authors

Yuka Ichikawa-Shindo, Takayuki Sakurai, Akiko Kamiyoshi, Hisaka Kawate, Nobuyoshi Iinuma, Takahiro Yoshizawa, Teruhide Koyama, Junichi Fukuchi, Satoshi Iimuro, Nobuo Moriyama, Hayato Kawakami, Toshinori Murata, Kenji Kangawa, Ryozo Nagai, Takayuki Shindo

×

Figure 6

In vivo vascular permeability assay.

Options: View larger image (or click on image) Download as PowerPoint
In vivo vascular permeability assay.
(A) Footpad edema model. λ-Carragee...
(A) Footpad edema model. λ-Carrageenan was injected into the footpad of 8-week-old RAMP2+/– and WT mice to induce edema for the evaluation of vascular permeability in adult mice; swelling of the footpad was measured hourly using a thickness gauge. RAMP2+/– mice showed significantly greater swelling than WT mice. n = 12 per group. **P < 0.01, *P < 0.05 vs. WT. (B) Skin edema model (see Methods). Fluorescence intensity was measured using a fluorescence microplate reader. Permeability levels are presented relative to WT. RAMP2+/– mice (n = 8) showed significantly greater vascular permeability than WT mice (n = 13). **P < 0.01 vs. WT. (C) Brain edema model (see Methods). Vascular permeability in RAMP2+/– mice (n = 12) is presented relative to that in WT mice (n = 10). RAMP2+/– mice showed significantly greater vascular permeability than WT mice. *P < 0.05 vs. WT.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts