Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Leptin inhibits 4-aminopyridine– and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents
Lin Xu, … , Michael Wong, Kelvin A. Yamada
Lin Xu, … , Michael Wong, Kelvin A. Yamada
Published December 20, 2007
Citation Information: J Clin Invest. 2008;118(1):272-280. https://doi.org/10.1172/JCI33009.
View: Text | PDF
Research Article

Leptin inhibits 4-aminopyridine– and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents

  • Text
  • PDF
Abstract

Leptin is a hormone that reduces excitability in some hypothalamic neurons via leptin receptor activation of the JAK2 and PI3K intracellular signaling pathways. We hypothesized that leptin receptor activation in other neuronal subtypes would have anticonvulsant activity and that intranasal leptin delivery would be an effective route of administration. We tested leptin’s anticonvulsant action in 2 rodent seizure models by directly injecting it into the cortex or by administering it intranasally. Focal seizures in rats were induced by neocortical injections of 4-aminopyridine, an inhibitor of voltage-gated K+ channels. These seizures were briefer and less frequent upon coinjection of 4-aminopyridine and leptin. In mice, intranasal administration of leptin produced elevated brain and serum leptin levels and delayed the onset of chemical convulsant pentylenetetrazole-induced generalized convulsive seizures. Leptin also reduced neuronal spiking in an in vitro seizure model. Leptin inhibited α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor–mediated synaptic transmission in mouse hippocampal slices but failed to inhibit synaptic responses in slices from leptin receptor–deficient db/db mice. JAK2 and PI3K antagonists prevented leptin inhibition of AMPAergic synaptic transmission. We conclude that leptin receptor activation and JAK2/PI3K signaling may be novel targets for anticonvulsant treatments. Intranasal leptin administration may have potential as an acute abortive treatment for convulsive seizures in emergency situations.

Authors

Lin Xu, Nicholas Rensing, Xiao-Feng Yang, Hai Xia Zhang, Liu Lin Thio, Steven M. Rothman, Aryan E. Weisenfeld, Michael Wong, Kelvin A. Yamada

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 684 56
PDF 73 20
Figure 346 7
Supplemental data 40 0
Citation downloads 69 0
Totals 1,212 83
Total Views 1,295
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts