Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice
Yanqing Gong, … , Aleksey Shchurin, Jane Hoover-Plow
Yanqing Gong, … , Aleksey Shchurin, Jane Hoover-Plow
Published August 1, 2008
Citation Information: J Clin Invest. 2008;118(9):3012-3024. https://doi.org/10.1172/JCI32750.
View: Text | PDF
Research Article Inflammation

Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice

  • Text
  • PDF
Abstract

Inflammation plays a critical role in the development of cardiovascular diseases. Infiltration of leukocytes to sites of injury requires their exit from the blood and migration across basement membrane; this process has been postulated to require remodeling of the ECM. Plasminogen (Plg) is a protease that binds to the ECM and, upon conversion to plasmin, degrades multiple ECM proteins. In addition, plasmin directly activates MMPs. Here, we used Plg–/– mice to investigate the role of Plg in inflammatory leukocyte migration. After induction of peritonitis by thioglycollate injection, we found that Plg–/– mice displayed diminished macrophage trans-ECM migration and decreased MMP-9 activation. Furthermore, injection of the active form of MMP-9 in Plg–/– mice rescued macrophage migration in this model. We used periaortic application of CaCl2 to induce abdominal aortic aneurysm (AAA) and found that Plg–/– mice displayed reduced macrophage infiltration and were protected from aneurysm formation. Administration of active MMP-9 to Plg–/– mice promoted macrophage infiltration and the development of AAA. These data suggest that Plg regulates macrophage migration in inflammation via activation of MMP-9, which, in turn, regulates the ability of the cells to migrate across ECM. Thus, targeting the Plg/MMP-9 pathway may be an attractive approach to regulate inflammatory responses and AAA development.

Authors

Yanqing Gong, Erika Hart, Aleksey Shchurin, Jane Hoover-Plow

×

Figure 8

Plg-mediated AAA formation requires MMP-9.

Options: View larger image (or click on image) Download as PowerPoint
Plg-mediated AAA formation requires MMP-9.
(A–C) MMP activity in aorta 1...
(A–C) MMP activity in aorta 1 week after CaCl2 or NaCl (Sham) treatment. (D–G) CaCl2-treated mice were injected with proMMP-9, actMMP-9, or PBS (n = 5–7), and 1 week after treatment, the abdominal aortas were examined. (A) Extracted aorta tissue (5 μg protein) was analyzed by gelatin zymography. (B) Intensity of actMMP-9 bands in zymogram assays (3 independent assays). (C) Intensity ratio (actMMP-9/proMMP-9) of zymogram assays. (D) Aortic diameter before and after treatment (left). Representative aortas are shown (right). (E) Aorta sections stained for elastic lamellae (EVG) and inflammatory cells (H&E). Original magnification, ×400. (F) Macrophages (Mac-3 antibody). Original magnification, ×200; insets, ×400. (G) Macrophage distribution expressed as percentage of total sample area in aorta (n = 4–5). *P < 0.05, **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts