Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice
Jamal Zaini, … , Toshihiro Nukiwa, Toshiaki Kikuchi
Jamal Zaini, … , Toshihiro Nukiwa, Toshiaki Kikuchi
Published November 1, 2007
Citation Information: J Clin Invest. 2007;117(11):3330-3338. https://doi.org/10.1172/JCI32693.
View: Text | PDF
Research Article

OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice

  • Text
  • PDF
Abstract

The exceptional immunostimulatory capacity of DCs makes them potential targets for investigation of cancer immunotherapeutics. We show here in mice that TNF-α–stimulated DC maturation was accompanied by increased expression of OX40 ligand (OX40L), the lack of which resulted in an inability of mature DCs to generate cellular antitumor immunity. Furthermore, intratumoral administration of DCs modified to express OX40L suppressed tumor growth through the generation of tumor-specific cytolytic T cell responses, which were mediated by CD4+ T cells and NKT cells. In the tumors treated with OX40L-expressing DCs, the NKT cell population significantly increased and exhibited a substantial level of IFN-γ production essential for antitumor immunity. Additional studies evaluating NKT cell activation status, in terms of IFN-γ production and CD69 expression, indicated that NKT cell activation by DCs presenting α-galactosylceramide in the context of CD1d was potentiated by OX40 expression on NKT cells. These results show a critical role for OX40L on DCs, via binding to OX40 on NKT cells and CD4+ T cells, in the induction of antitumor immunity in tumor-bearing mice.

Authors

Jamal Zaini, Sita Andarini, Minoru Tahara, Yasuo Saijo, Naoto Ishii, Kazuyoshi Kawakami, Masaru Taniguchi, Kazuo Sugamura, Toshihiro Nukiwa, Toshiaki Kikuchi

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 658 57
PDF 79 21
Figure 256 8
Supplemental data 47 2
Citation downloads 86 0
Totals 1,126 88
Total Views 1,214
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts