Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sustained pharmacological inhibition of δPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats
Xin Qi, … , Raymond A. Sobel, Daria Mochly-Rosen
Xin Qi, … , Raymond A. Sobel, Daria Mochly-Rosen
Published December 20, 2007
Citation Information: J Clin Invest. 2008;118(1):173-182. https://doi.org/10.1172/JCI32636.
View: Text | PDF
Research Article

Sustained pharmacological inhibition of δPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats

  • Text
  • PDF
Abstract

Hypertensive encephalopathy is a potentially fatal condition associated with cerebral edema and the breakdown of the blood-brain barrier (BBB). The molecular pathways leading to this condition, however, are unknown. We determined the role of δPKC, which is thought to regulate microvascular permeability, in the development of hypertensive encephalopathy using δV1-1 — a selective peptide inhibitor of δPKC. As a model of hypertensive encephalopathy, Dahl salt-sensitive rats were fed an 8% high-salt diet from 6 weeks of age and then were infused s.c. with saline, control TAT peptide, or δV1-1 using osmotic minipumps. The mortality rate and the behavioral symptoms of hypertensive encephalopathy decreased significantly in the δV1-1–treated group relative to the control-treated group, and BBB permeability was reduced by more than 60%. Treatment with δV1-1 was also associated with decreased δPKC accumulation in capillary endothelial cells and in the endfeet of capillary astrocytes, which suggests decreased microvasculature disruption. Treatment with δV1-1 prevented hypertension-induced tight junction disruption associated with BBB breakdown, which suggests that δPKC may specifically act to dysregulate tight junction components. Together, these results suggest that δPKC plays a role in the development of hypertension-induced encephalopathy and may be a therapeutic target for the prevention of BBB disruption.

Authors

Xin Qi, Koichi Inagaki, Raymond A. Sobel, Daria Mochly-Rosen

×

Figure 5

Sustained δV1-1 peptide treatment blocks the translocation of ZO-1 and occludin out of the tight junction-enriched cytoskeletal fractions in brains of hypertensive rats.

Options: View larger image (or click on image) Download as PowerPoint
Sustained δV1-1 peptide treatment blocks the translocation of ZO-1 and o...
Cytosolic and membranal (detergent-soluble) fractions and cytoskeletal (detergent-insoluble) fraction were isolated from rat brains treated as above. (A) Lysates from DS rat brains were subject to Western blot and analyzed using anti–ZO-1 and anti-occludin antibodies. GAPDH (a cytosolic marker) and Gα (a membranal marker) were used as internal controls. (B) Histogram demonstrating translocation of ZO-1 and occludin out of the cytoskeletonal fractions in TAT-treated rats and its reversal in the δV1-1–treated group. Data are mean ± SEM (n = 3 rats per group). F = 27.97, df = 3 (ZO-1); F = 8.84, df = 3 (occludin). #P < 0.05 versus rats fed low-salt diet; *P < 0.05 versus TAT or saline treatment. (C) Total lysates from DS rat brains were subjected to Western blot analysis with anti–ZO-1 and anti-occludin antibodies. GAPDH was used as an internal loading control. n = 3 rats per group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts