Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Regulation of erythrocyte lifespan: do reactive oxygen species set the clock?
Shilpa M. Hattangadi, Harvey F. Lodish
Shilpa M. Hattangadi, Harvey F. Lodish
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2075-2077. https://doi.org/10.1172/JCI32559.
View: Text | PDF
Commentary

Regulation of erythrocyte lifespan: do reactive oxygen species set the clock?

  • Text
  • PDF
Abstract

The forkhead box O (Foxo) subfamily of transcription factors regulates expression of genes important for many cellular processes, ranging from initiation of cell cycle arrest and apoptosis to induction of DNA damage repair. Invertebrate Foxo orthologs such as DAF-16 also regulate longevity. Cellular responses inducing resistance to ROS are important for cellular survival and organism lifespan, but until recently, mammalian factors regulating resistance to oxidative stress have not been well characterized. Marinkovic and colleagues demonstrate in this issue of the JCI that Foxo3 is specifically required for induction of proteins that regulate the in vivo oxidative stress response in murine erythrocytes (see the related article beginning on page 2133). Their work offers the interesting hypothesis that in so doing, Foxo3 may regulate the lifespan of red blood cells, and underlies the importance of understanding the direct targets of this transcription factor and its regulation.

Authors

Shilpa M. Hattangadi, Harvey F. Lodish

×

Full Text PDF | Download (241.61 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts