Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients
Jun Araya, … , David J. Erle, Stephen L. Nishimura
Jun Araya, … , David J. Erle, Stephen L. Nishimura
Published October 25, 2007
Citation Information: J Clin Invest. 2007;117(11):3551-3562. https://doi.org/10.1172/JCI32526.
View: Text | PDF
Research Article Pulmonology

Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients

  • Text
  • PDF
Abstract

Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1β, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-β activation in amplifying SM and driving IL-1β–dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin αvβ8, which is the major mediator of airway fibroblast TGF-β activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-β as a potential therapeutic target for COPD.

Authors

Jun Araya, Stephanie Cambier, Jennifer A. Markovics, Paul Wolters, David Jablons, Arthur Hill, Walter Finkbeiner, Kirk Jones, V. Courtney Broaddus, Dean Sheppard, Andrea Barzcak, Yuanyuan Xiao, David J. Erle, Stephen L. Nishimura

×

Figure 10

Hypothetical model of SM in the pathogenesis of airway wall thickening in COPD.

Options: View larger image (or click on image) Download as PowerPoint
Hypothetical model of SM in the pathogenesis of airway wall thickening i...
(a) The normal airway epithelium when exposed to noxious stimuli responds by increasing TGF-β production (12) and increasing TGF-β activation, which increases expression of the β6 integrin, a TGF-β responsive gene (31) contributing to (b) a phenotypic switch to SM, a TGF-β driven process (11). (c) Squamous metaplastic epithelial cells secrete increased IL-1β, which acts a paracrine factor with adjacent airway fibroblasts. (d) Airway fibroblasts respond to IL-1β by increasing β8 expression and αvβ8-mediated TGF-β activation. Increased TGF-β activation by airway fibroblasts causes (e) autocrine effects on the fibrogenic fibroblast phenotype by increasing Col I and αSMA and (f) paracrine effects on adjacent airway epithelium, which inhibits epithelial proliferation (10, 44, 66) and contributes to the increased expression of β6 by adjacent airway epithelial cells, forming a self-amplifying loop of TGF-β activation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts