The activation of interstitial fibroblasts to become α-SMA–positive myofibroblasts is an essential step in the evolution of chronic kidney fibrosis, as myofibroblasts are responsible for the production and deposition of the ECM components that are a hallmark of the disease. Here we describe a signaling pathway that leads to this activation. Tissue-type plasminogen activator (tPA) promoted TGF-β1–mediated α-SMA and type I collagen expression in rat kidney interstitial fibroblasts. This fibrogenic effect was independent of its protease activity but required its membrane receptor, the LDL receptor–related protein 1 (LRP-1). In rat kidney fibroblasts, tPA induced rapid LRP-1 tyrosine phosphorylation and enhanced β1 integrin recruitment by facilitating the LRP-1/β1 integrin complex formation. Blockade or knockdown of β1 integrin abolished type I collagen and α-SMA expression. Furthermore, inhibition of the integrin-linked kinase (ILK), a downstream effector of β1 integrin, or disruption of β1 integrin/ILK engagement, abrogated the tPA action, whereas ectopic expression of ILK mimicked tPA in promoting myofibroblast activation. In murine renal interstitium after obstructive injury, tPA and α-SMA colocalized with LRP-1, and tPA deficiency reduced LRP-1/β1 integrin interaction and myofibroblast activation. These findings show that tPA induces LRP-1 tyrosine phosphorylation, which in turn facilitates the LRP-1–mediated recruitment of β1 integrin and downstream ILK signaling, thereby leading to myofibroblast activation. This study implicates tPA as a fibrogenic cytokine that promotes the progression of kidney fibrosis.
Kebin Hu, Chuanyue Wu, Wendy M. Mars, Youhua Liu
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 535 | 61 |
81 | 36 | |
Figure | 550 | 10 |
Supplemental data | 49 | 1 |
Citation downloads | 77 | 0 |
Totals | 1,292 | 108 |
Total Views | 1,400 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.