Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Geranylgeranyltransferase I as a target for anti-cancer drugs
Mark R. Philips, Adrienne D. Cox
Mark R. Philips, Adrienne D. Cox
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1223-1225. https://doi.org/10.1172/JCI32108.
View: Text | PDF
Commentary

Geranylgeranyltransferase I as a target for anti-cancer drugs

  • Text
  • PDF
Abstract

Posttranslational modification is critical for the function of the gene products of ras oncogenes, which are frequently mutated in cancer. Ras proteins are modified by farnesyltransferase (FTase), but many related small GTPases that also end in a CAAX motif (where C is cysteine, A is often an aliphatic amino acid, and X is any amino acid) are modified by a closely related enzyme known as geranylgeranyltransferase type I (GGTase-I). Accordingly, inhibitors for both of these enzymes have been developed, and those active against FTase are in clinical trials. In this issue of the JCI, Sjogren et al. report the development of a mouse strain homozygous for a conditional allele of the gene that encodes GGTase-I (see the related article beginning on page 1294). They found that ablation of the GGTase-I–encoding gene in cells destined to produce lung tumors driven by oncogenic K-Ras resulted in delayed onset and decreased severity of disease, validating in a genetic model the theory that GGTase-I is a good target for anti-cancer drug development.

Authors

Mark R. Philips, Adrienne D. Cox

×

Full Text PDF | Download (250.35 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts