Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Endothelial sulfonylurea receptor 1–regulated NCCa-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury
J. Marc Simard, … , S. Kyoon Woo, Volodymyr Gerzanich
J. Marc Simard, … , S. Kyoon Woo, Volodymyr Gerzanich
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2105-2113. https://doi.org/10.1172/JCI32041.
View: Text | PDF
Research Article Neuroscience

Endothelial sulfonylurea receptor 1–regulated NCCa-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury

  • Text
  • PDF
Abstract

Acute spinal cord injury (SCI) causes progressive hemorrhagic necrosis (PHN), a poorly understood pathological process characterized by hemorrhage and necrosis that leads to devastating loss of spinal cord tissue, cystic cavitation of the cord, and debilitating neurological dysfunction. Using a rodent model of severe cervical SCI, we tested the hypothesis that sulfonylurea receptor 1–regulated (SUR1-regulated) Ca2+-activated, [ATP]i-sensitive nonspecific cation (NCCa-ATP) channels are involved in PHN. In control rats, SCI caused a progressively expansive lesion with fragmentation of capillaries, hemorrhage that doubled in volume over 12 hours, tissue necrosis, and severe neurological dysfunction. SUR1 expression was upregulated in capillaries and neurons surrounding necrotic lesions. Patch clamp of cultured endothelial cells exposed to hypoxia showed that upregulation of SUR1 was associated with expression of functional SUR1-regulated NCCa-ATP channels. Following SCI, block of SUR1 by glibenclamide or repaglinide or suppression of Abcc8, which encodes for SUR1 by phosphorothioated antisense oligodeoxynucleotide essentially eliminated capillary fragmentation and progressive accumulation of blood, was associated with significant sparing of white matter tracts and a 3-fold reduction in lesion volume, and resulted in marked neurobehavioral functional improvement compared with controls. We conclude that SUR1-regulated NCCa-ATP channels in capillary endothelium are critical to development of PHN and constitute a major target for therapy in SCI.

Authors

J. Marc Simard, Orest Tsymbalyuk, Alexander Ivanov, Svetlana Ivanova, Sergei Bhatta, Zhihua Geng, S. Kyoon Woo, Volodymyr Gerzanich

×

Figure 2

The SUR1-regulated NCCa-ATP channel is upregulated in endothelial cells by hypoxia.

Options: View larger image (or click on image) Download as PowerPoint
The SUR1-regulated NCCa-ATP channel is upregulated in endothelial cells ...
(A) Immunolabeling (scale bar: 50 μm) and Western blots for SUR1 in human aortic endothelial cells (ENDO) cultured under normoxic (N) or hypoxic (H) conditions as indicated, as well as Western blots for SUR1 of rat insulinoma RIN-m5F cells (INSUL) cultured under normoxic or hypoxic condition, with β-actin also shown. (B and C) Whole-cell currents during ramp pulses (4 per minute; holding potential [HP], –50 mV) or at the holding potential of –50 mV, before and after application of diazoxide (B) or Na azide (C), in endothelial cells exposed to normoxic or hypoxic conditions; the difference currents are also shown in red. Erev, reversal potential; GLIB, glibenclamide. Data are representative of 7–15 recordings from human aortic endothelial cells (B) or bEnd.3 cells (C) for each condition. (D) Single-channel recordings of inside-out patches with Cs+ as the principal cation, with channel openings inhibited by ATP on the cytoplasmic side; channel amplitude at various potentials indicated a slope conductance of 37 pS (data from 7 patches) from human brain microvascular endothelial cells. Error bars indicate SEM.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts