Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease
Sanja Sever, … , Boris Nikolic, Jochen Reiser
Sanja Sever, … , Boris Nikolic, Jochen Reiser
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2095-2104. https://doi.org/10.1172/JCI32022.
View: Text | PDF
Research Article

Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease

  • Text
  • PDF
Abstract

Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.

Authors

Sanja Sever, Mehmet M. Altintas, Sharif R. Nankoe, Clemens C. Möller, David Ko, Changli Wei, Joel Henderson, Elizabetta C. del Re, Lianne Hsing, Ann Erickson, Clemens D. Cohen, Matthias Kretzler, Dontscho Kerjaschki, Alexander Rudensky, Boris Nikolic, Jochen Reiser

×

Figure 1

CatL is essential for proteinuric kidney diseases.

Options: View larger image (or click on image) Download as PowerPoint
CatL is essential for proteinuric kidney diseases.
(A) Quantitative rt-P...
(A) Quantitative rt-PCR of microdissected glomeruli from human biopsies of patients with acquired proteinuric diseases: minimal change disease (MCD; n = 7), membranous glomerulonephritis (MGN; n = 9), focal segmental glomerulosclerosis (FSGS; n = 7), and diabetic nephropathy (DN; n = 10). **P < 0.01. CON, control (n = 8). (B) CatL labeling of normal human kidney. (C) CatL labeling of human kidney with diabetic nephropathy, mildly reduced renal function, and nephrotic range proteinuria. (D) Immunocytochemistry of mouse glomeruli using monoclonal anti-CatL antibody. WT mice received either PBS (WT CON) or LPS (WT LPS). LPS was also injected into CatL–/– mice (CatL–/– LPS). Original magnification, ×400 (C and D). (E) Electron micrographs of FPs. (F) Urinary protein levels determined using the standard Bradford protein assay. Urine was collected immediately before (Baseline) and 48 hours after addition of LPS. Each bar represents at least 8 animals.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts