Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation
John D. Lang Jr., … , Devin E. Eckhoff, Rakesh P. Patel
John D. Lang Jr., … , Devin E. Eckhoff, Rakesh P. Patel
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2583-2591. https://doi.org/10.1172/JCI31892.
View: Text | PDF
Research Article

Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation

  • Text
  • PDF
Abstract

Ischemia/reperfusion (IR) injury in transplanted livers contributes to organ dysfunction and failure and is characterized in part by loss of NO bioavailability. Inhalation of NO is nontoxic and at high concentrations (80 ppm) inhibits IR injury in extrapulmonary tissues. In this prospective, blinded, placebo-controlled study, we evaluated the hypothesis that administration of inhaled NO (iNO; 80 ppm) to patients undergoing orthotopic liver transplantation inhibits hepatic IR injury, resulting in improved liver function. Patients were randomized to receive either placebo or iNO (n = 10 per group) during the operative period only. When results were adjusted for cold ischemia time and sex, iNO significantly decreased hospital length of stay, and evaluation of serum transaminases (alanine transaminase, aspartate aminotransferase) and coagulation times (prothrombin time, partial thromboplastin time) indicated that iNO improved the rate at which liver function was restored after transplantation. iNO did not significantly affect changes in inflammatory markers in liver tissue 1 hour after reperfusion but significantly lowered hepatocyte apoptosis. Evaluation of circulating NO metabolites indicated that the most likely candidate transducer of extrapulmonary effects of iNO was nitrite. In summary, this study supports the clinical use of iNO as an extrapulmonary therapeutic to improve organ function following transplantation.

Authors

John D. Lang Jr., Xinjun Teng, Phillip Chumley, Jack H. Crawford, T. Scott Isbell, Balu K. Chacko, Yuliang Liu, Nirag Jhala, D. Ralph Crowe, Alvin B. Smith, Richard C. Cross, Luc Frenette, Eric E. Kelley, Diana W. Wilhite, Cheryl R. Hall, Grier P. Page, Michael B. Fallon, J. Steven Bynon, Devin E. Eckhoff, Rakesh P. Patel

×

Figure 2

iNO decreases reperfusion-dependent hepatic cell death.

Options: View larger image (or click on image) Download as PowerPoint
iNO decreases reperfusion-dependent hepatic cell death.
(A) Histopatholo...
(A) Histopathologic scoring of hepatic tissue samples before (white bars) and 1 hour after reperfusion (black bars). P values represent significance calculated by paired t test. (B) Representative H&E-stained sections indicating increased injury in LB2. Original magnification, ×25. The circled area is shown at a higher magnification (×100) in the inset and shows increased PMN infiltration adjacent to the hepatic vein (zone 3). (C) Representative fluorescence micrographs showing changes in TUNEL-positive cells (green); blue staining: DAPI. Original magnification, ×25. (D) Paired changes in TUNEL-positive objects in liver biopsies before (LB1) and 1 hour after reperfusion (LB2). P values represent significance calculated by paired t test. (E) Average reperfusion-dependent increases in TUNEL-positive objects. *P ≤ 0.0005 relative to placebo.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts