Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Molecular pathogenesis of emphysema
Laimute Taraseviciene-Stewart, Norbert F. Voelkel
Laimute Taraseviciene-Stewart, Norbert F. Voelkel
View: Text | PDF
Personal perspective

Molecular pathogenesis of emphysema

  • Text
  • PDF
Abstract

Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema.

Authors

Laimute Taraseviciene-Stewart, Norbert F. Voelkel

×

Figure 4

One pathway likely involved in lung cell structure maintenance.

Options: View larger image (or click on image) Download as PowerPoint
One pathway likely involved in lung cell structure maintenance.
VEGF gen...
VEGF gene expression is controlled by hypoxia-inducible factor 1α (HIF-1α). In endothelial cells, synthesis of prostacyclin (PGI2) and NO is one outcome of VEGFR activation. Reactive oxygen species can damage the promoter region of the VEGF gene and thus impair VEGF transcription. Activation of VEGFR2 induces NO production. NO and PGI2 promote endothelial cell survival. While it is known that VEGFR2 activation promotes NO production, the link between VEGFR2 activation and PGI2 synthesis still needs to be established.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts