Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice
Karin M. Aberg, … , Kenneth R. Feingold, Peter M. Elias
Karin M. Aberg, … , Kenneth R. Feingold, Peter M. Elias
Published November 1, 2007
Citation Information: J Clin Invest. 2007;117(11):3339-3349. https://doi.org/10.1172/JCI31726.
View: Text | PDF
Research Article

Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice

  • Text
  • PDF
Abstract

The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and β-defensin 3. Pharmacological blockade of the stress hormone corticotrophin-releasing factor or of peripheral GC action, as well as topical administration of physiologic lipids, normalized epidermal AMP levels and delivery to LBs and decreased the severity of GAS infection during PS. Our results show that PS decreases the levels of 2 key AMPs in the epidermis and their delivery into LBs and that this is attributable to increased endogenous GC production. These data suggest that GC blockade and/or topical lipid administration could normalize cutaneous antimicrobial defense during PS or GC increase. We believe this to be the first mechanistic link between PS and increased susceptibility to infection by microbial pathogens.

Authors

Karin M. Aberg, Katherine A. Radek, Eung-Ho Choi, Dong-Kun Kim, Marianne Demerjian, Melanie Hupe, Joseph Kerbleski, Richard L. Gallo, Tomas Ganz, Theodora Mauro, Kenneth R. Feingold, Peter M. Elias

×

Figure 6

Endogenous GCs downregulate AMP expression in normal mouse epidermis.

Options: View larger image (or click on image) Download as PowerPoint
Endogenous GCs downregulate AMP expression in normal mouse epidermis.
Im...
Immunostaining for CRAMP (A–D) and mBD3 (E–H) mRNA expression was assessed in biopsies from normal hairless mice (n = 3 per group) treated with RU-486 (B and F), antalarmin (C and G), or vehicle (A and E) and from cohorts of adrenalectomized (adrex; D, H, I, and J) and sham-operated (I and J) hairless Skh1 mice (n = 3 per group). Scale bar: 50 μm. *P = 0.04; **P = 0.006.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts