Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
Marc Claret, … , David Carling, Dominic J. Withers
Marc Claret, … , David Carling, Dominic J. Withers
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2325-2336. https://doi.org/10.1172/JCI31516.
View: Text | PDF
Research Article

AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons

  • Text
  • PDF
Abstract

Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMCα2KO and AgRPα2KO mice lacking AMPKα2 in proopiomelanocortin– (POMC-) and agouti-related protein–expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMCα2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRPα2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPKα2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMCα2KO and AgRPα2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.

Authors

Marc Claret, Mark A. Smith, Rachel L. Batterham, Colin Selman, Agharul I. Choudhury, Lee G.D. Fryer, Melanie Clements, Hind Al-Qassab, Helen Heffron, Allison W. Xu, John R. Speakman, Gregory S. Barsh, Benoit Viollet, Sophie Vaulont, Michael L.J. Ashford, David Carling, Dominic J. Withers

×

Figure 6

POMC neurons lacking AMPKα2 respond to anorexigenic hormones but are glucose insensitive.

Options: View larger image (or click on image) Download as PowerPoint
POMC neurons lacking AMPKα2 respond to anorexigenic hormones but are glu...
Current-clamp recordings were made using the perforated patch technique from POMCα2KO (A, B, and D) and control (C) POMC ARC neurons. Ten nanomolar leptin (A) and 20 nM insulin (B) were locally applied for 1–2 minutes (where indicated), inducing depolarization and hyperpolarization, respectively. The leptin-induced depolarization and insulin-induced hyperpolarization were associated with increased and decreased action potential frequency, respectively, as shown in the expanded section and in subsequent figures (lower panels). Note that spike amplitudes are truncated in the expanded sections to demonstrate changes in Vm. Reducing glucose from 2 to 0.1 mM reversibly hyperpolarizes and reduces firing frequency in control POMC neurons (C) but has no effect in POMC neurons lacking the AMPKα2 subunit (D). The broken white line in the traces represents 0 mV.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts