Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice
Paul A. Dawson, … , Lorne A. Clarke, Daniel Markovich
Paul A. Dawson, … , Lorne A. Clarke, Daniel Markovich
Published February 15, 2010
Citation Information: J Clin Invest. 2010;120(3):706-712. https://doi.org/10.1172/JCI31474.
View: Text | PDF
Research Article Nephrology

Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice

  • Text
  • PDF
Abstract

Urolithiasis, a condition in which stones are present in the urinary system, including the kidneys and bladder, is a poorly understood yet common disorder worldwide that leads to significant health care costs, morbidity, and work loss. Acetaminophen-induced liver damage is a major cause of death in patients with acute liver failure. Kidney and urinary stones and liver toxicity are disturbances linked to alterations in oxalate and sulfate homeostasis, respectively. The sulfate anion transporter–1 (Sat1; also known as Slc26a1) mediates epithelial transport of oxalate and sulfate, and its localization in the kidney, liver, and intestine suggests that it may play a role in oxalate and sulfate homeostasis. To determine the physiological roles of Sat1, we created Sat1–/– mice by gene disruption. These mice exhibited hyperoxaluria with hyperoxalemia, nephrocalcinosis, and calcium oxalate stones in their renal tubules and bladder. Sat1–/– mice also displayed hypersulfaturia, hyposulfatemia, and enhanced acetaminophen-induced liver toxicity. These data suggest that Sat1 regulates both oxalate and sulfate homeostasis and may be critical to the development of calcium oxalate urolithiasis and hepatotoxicity.

Authors

Paul A. Dawson, Christopher S. Russell, Soohyun Lee, Sarah C. McLeay, Jacobus M. van Dongen, David M. Cowley, Lorne A. Clarke, Daniel Markovich

×

Figure 4

Energy dispersive X-ray spectrometry analysis of kidney stones in Sat1–/– mice.

Options: View larger image (or click on image) Download as PowerPoint
Energy dispersive X-ray spectrometry analysis of kidney stones in Sat1–/...
(A and B) Representative electron micrograph (A) and energy dispersive X-ray micrograph (B) showing kidney stones (arrowheads in B) in the renal cortex and outer medullary region of Sat1–/– mice. Higher-magnification view of the boxed region in B is shown in the inset. Scale bar: 1 mm; 100 μm (inset). (C) Elemental profile of kidney stones showing abundance of calcium (11.01% ± 0.03%), oxygen (36.53% ± 0.22%), and carbon (51.46% ± 0.08%), as well as trace levels (≤0.30%) of sodium, magnesium, aluminium, sulfur, chromium, and iron. CPS, counts per second; keV, kiloelectron volts.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts